The Reconfigurable Computing Laboratory at UPR RP

Rafael Arce-Nazario & Edusmildo Orozco Computer Science Department UPR – Río Piedras

Agenda

- Motivation
- A short story of the rclab@uprrp
- Equipment
- From your idea to to the magic silicon.
- The Mirionics approach
- Project examples

Motivation

The sequential programming "free lunch is over"

Description of the state of

Parallelism to the rescue

- Options: take advantage of parallelism in:
 - Distributed, cluster computing.
 - Multi-core General Purpose Processors
 - Graphical Processing Units
 - Reconfigurable Computers
- To the best of our knowledge UPR is only taking (limited) advantage of traditional distributed computing,
- . and some interesting initiatives in GPUs (UPRH, UPRM) and Reconfig Logic (UPRM, UPR-RP)

FPGAs

- Both of us have had positive research experiences in projects using FPGAs
 - Orozco: Finite field arithmetic units
 - Arce: Eastman Kodak and Dissertation

- Well document history of dramatic speedups and energy efficiency vs. other alternatives.
- Let's make this computing platform technology available to the UPR!
 - A research 'playground' for us.
 - A an educational and production tool for the rest of the university.

•NSF-MRI

- Acquisition of Equipment for the Establishment of a Reconfigurable Computing Center at the UPR.
 - Requests instrumentation to establish a university center for research, applications and education on Reconfigurable Computing.
 - Instrumentation: Three MVP622 "DUAL QUAD" hybrid computers from Mitrionics AB.
 - Hardware + Development software
 - Added bonus: Open source implementations of usefull applications

•NSF-MRI

- Three key activities envisioned for the Center:
 - Support research in diverse areas of knowledge through accelerated applications running on RC's (e.g. BLAST DNA seq alignment, discrete math)
 - Education to create a community of researchers and students knowledgeable and skilled in this powerful computing approach.
 - Research on tools and methodologies to improve design flow from abstraction to implementation on RC.

Collaborative Projects

- Hardware/Software Codesign Tools Arce/Jimenez
- Search for computational results to discrete math problems
 - Latin Square Orthogonality Rubio/Castro/Cordova/Arce (CS and Math UPR-RP)
 - Hypercube Cut Problem Emamy (Math)/ Arce
- Fast Finite Field Arithmetic with FPGAs Orozco/Bollman (UPR-RP/M)
- Reverse Engineering Genetic Networks Orozco/Bollman/García/Peña (CS UPR-RP/M, Biology UPR-RP)
- Accelerated bioinformatics applications for microbiology García/Dominguez (Biology UPR-RP)
- Design of Reconfigurable Radar Waveforms Rodriguez/Jimenez (ECE UPR-M)

Equipment

- 3 Convey HC-1 Servers: each with Intel Dual-core processor + quad-FPGA accelerator.
- Mitrion SDK and MVP licences.

Convey HC-1

The FPGA Co-processor

The FPGA as a coprocessor

- A coprocessor that is customizable to the application.
- Finance applications: Random # Gen, MC Simulation
- Digital Signal Processing: FFTs
- Cryptography: Finite field arithmetic

What is an FPGA?

An <u>integrated circuit</u> that consists of an array of (programmable) Configurable Logic Blocks (CLBs) connected by programmable interconnections (switch matrices).

Traditional Hardware/Software Codesign

H/S Codesign: Mitrionics Approach

Mitrion C development cycle

Mitrion C

- The Mitrion-C programming language is an implicitly parallel programming language with syntax very similar to C.
- The main purpose of the Mitrion-C programming language is to aid and support the programmer in fulfilling the requirements of parallel execution.
- In other words, a replacement for HDLs (?)

A taste of Mitrion-C

```
Perform matrix multiplication on two matrices
 *
   represented as lists.
 \star
*/
matmul(matrix_a, matrix_b, ncols)
{
   matrix_c = foreach(row_a in matrix_a)
   {
       FLOAT <ncols> tmp_row_c=foreach(i in < 1...ncols >) (FLOAT) 0.0;
       row_c = for (val_a, row_b in row_a, matrix_b)
       {
           tmp_row_c = foreach(val_b, val_c in row_b, tmp_row_c)
                        val_c + val_b * val_a;
       }
       tmp_row_c;
   }
   row_c;
}
matrix_c;
```

We are in good company

- Solution 3 major research centers have acquire Convey equipment "to explore the application of reconfigurable computing technology to challenging computing problems"
- Lawrence Berkeley Labs:
 - energy-efficient systems to model climate change at unprecedented resolutions
- Stanford University
 - Next gen seismic algorithms, apps to earch sciences
- Oak Ridge National Labs:
 - In nuclear energy, climate modeling, open science and other areas supporting the nation's security and infrastructure

We are in good company (cont)

One of Convey's customers, University of San Diego, has found that they save 90% of power and that they could replace 8 racks of servers with just one rack of Convey servers.

Educational use

- Open invitation to CS and Engineering professors and students who would like to use the RC platform in their courses or research.
- Target courses:
 - Parallel programming
 - Intermediate, advanced digital design courses/labs
 - Hardware description languages
 - Reconfigurable computing / H/S codesign
 - Computer architecture / Hardware arithmetic
 - Special Topics: cryptography, bioinformatics

Educational use

- Main advantages vs. existing FPGA equipment
 - I/O throughput
 - USB (53MB/s) vs. 80GB/s
 - High-end FPGAs!
 - Software Tool Flow
 - Your choice of disparate tools vs. Mitrion
- Advantages over traditional parallel processing
 - Power, space efficiency
 - Higher performance
 - New paradigm

Activities

- Training from Mitrionics
- Training by RCLab and invited personnel
 - Development related
 - Introductory and advanced
 - Production related
 - Sequence Alignment: Mitrion-C Open Bio Project, Smith Waterman
 - Others as requested..

Training material will be available online through our website: http://ccom.uprrp.edu/~rarce/rclab

A simple example of RC advantage

Latin square orthogonality

Latin Square Orthogonality

A latin square of order n is a n×n array in which each cell contains a single element from an n-set S, such that each element occurs exactly once in each row and exactly once in each column.

Two Latin Squares are said to be r-orthogonal if when the squares are superimposed we get r distinct order pairs of symbols.

```
02132031102132032330011231021320
```

Distinct pairs:
{(0,2),(1,3),(2,0),(3,1),
(1,0),(2,1),(3,2),(0,3)
(2,3),(3,0),(1,0),(1,2)}

12-orthogonal

Latin Square Orthogonality

MAIN ROUTINE

```
for every r in R
  for every s in S
    o1 = orto(r,s);
    for every t in S
      Tort = orto(r,s)+orto(r,t)+orto(s,t);
      if Tort > Max_ort then Maxort = Tort;
   next t;
  next s:
next r;
```

ORTO FUNC

```
function orto(a,b)
  bit pair[6][6] = \{0,0,0,\ldots,0\}; count = 0;
  for i = 0 to 35
    if pair[a[i],b[i]] = 0 then count++;
    pair[a[i],b[i]] = 1;
  next i:
  return count;
end function orto;
```

```
12345
              0 1 2 3
1 2 3 4 5 0
              3 4 5 0 1 2
2 3 4 5 0 1
              4 5 0 1 2 3
 4 5 0 1 2
              1 2 3 4
                     5 0
4 5 0 1 2 3 2 3 4 5 0 1
501234
              501234
       1 0 0 0 0 0
       0 1 0 0 0 0
       0 0 0 0 0 0
       0 0 0 0 0 0
       0 0 0 0 0 0
       0 0 0 0 0 0
```

Notice: Accesses to memory, bit manipulation.

3

Net effect: My PC (2.66GHz Intel Core Duo, 2GB 800MHz RAM) can process 1.45×10⁶ LS trios per second.

LS Orthogonality on an RC

Thanks for your attention!

Contact info:

http://ccom.uprrp.edu/~rarce/rclab

Rafael Arce Nazario: rafael.arce@upr.edu

Edusmildo Orozco: eorozco@uprrp.edu