
Anomaly Detection in Network Flows
Benford’s Law

Bianca I. Colón Rosado
bianca.colon1@upr.edu

Computer Science Department
University of Puerto Rico - Ŕıo Piedras

Advisor:
Humberto Ortiz Zuazaga
humberto@hpcf.upr.edu

Computer Science Department
University of Puerto Rico - Ŕıo Piedras

May 2016

Abstract

The Benford’s Law, is a phenomenological law about the frequency
distribution of leading digits in many real-life sets of numerical data.
Our assumption is that Benford’s law applies to the TCP flow inter-
arrival times as well, and therefore, simpler approaches for computer
network traffic analysis can be applied, specifically with the aim of
fault and intrusion detection. To prove it we are using the Numenta
Anomaly Benchmark, that contains labeled data with anomalies. We
are classifying as flow anomalies the peaks that deviate from the base-
line when we apply the Benford’s Law. An important advantage of
this method is that malware cannot easily adapt their communication
pattern to conform to the logarithmic distribution of first digits. If the
Benford’s law works in TCP flows, we will be close to find a general
method to detect anomalies in network traffic.

1

1 Description

Last semester we implemented the Benford’s law [3]. The Benford’s law also
called the First-Digit Law, is a phenomenological law about the frequency
distribution of leading digits in many real-life sets of numerical data. That
law states that in many naturally occurring collections of numbers the small
digits occur disproportionately often as leading significant digits.

We started looking for a general technique for anomaly detection in Net-
work Flows. Our assumption was that Benford’s law applies to the TCP flow
inter-arrival times as well, and therefore, simpler approaches for computer
network traffic analysis can be applied, specifically with the aim of fault and
intrusion detection. We expect that intentional attacks alter the first digit
distribution of the inter-arrival times can simply be detected without the
need of packet header inspection.

This semester, we implemented the Evaluating Real-time Anomaly De-
tection Algorithms – the Numenta Anomaly Benchmark (NAB) [9], in or-
der to compare and evaluate different algorithms for detecting anomalies in
streaming data. Using NAB we identify two phases where we want to work.

1. Use NAB with our SiLK flows, to identify anomalies in our data.

2. Run our Bendford’s Algorithm with their flows data, that is already
labeled with real anomalies. With this approach we can prove if our
algorithm work with TCP flow inter-arrival times.

2 Background

2.1 Benford’s Law

According to Benford’s law of anomalous numbers the frequency of the digit
d, appearing as the first significant digit in a collection of numbers, is no
uniform as expected intuitively, rather it follows closely the logarithmic re-
lation:

Pd = log10
d + 1

d
,Σ9

d=1P (d)

Sets which obey the law the number 1 would appear as the most significant
digit about 30% of the time while larger digits would occur in that position
less frequently: 9 would appear less than 5% of the time. If all digits were

2

distributed uniformly, they would each occur about 11.1% of the time. See
Figure 1.

3 Methodology

In order to use NAB with our SiLK flows, to identify anomalies in our data.

1. We start the installation process of NAB in HULK. After numerous
attempts of trying, we cannot install it in HULK.

2. Then we start installing NAB locally in my computer. We install it,
but only work’s once before it crash. After numerous attemps to make
it work we cannot make it work.

We documented the followed steps in GitHub [10].
Then we decide to move to the second phase that is run our Bendford’s

Algorithm with the NAB flows data, that is already labeled with real anoma-
lies.

1. We adapted our Benford’s program to receive the format provided by
NAB. We include the program in the Appendix.

2. We graphed the results in Plotly [8].

4 Results

We start comparing the expected curve provided by Benford’s Law (Figure
1) with the results obtained from the data labeled as no anomalies (Figure
2).

We notice some differences that should not be there assuming the data
don’t have anomalies. To find more information about this differences we
search the deviations from the Benford theoretical curve.

In the graph of the Deviations from the Benford Theoretical Curve, (Fig-
ure 3), there’s a gap between the days from September 5 and some hours of
September 9 in the provided data. We didn’t notice that until we make this
graph.

Also, looking the graph we need to find information to define the real
anomalies. We want to prognosticate how close or far the deviation need to
be from zero to be counted as a TP, FP, FN, TN.

3

Figure 1: Expected curve

Figure 2: Observed curve

5 Conclusion

In order to prove that the Benford’s Law can detect anomalies in Network
Flows we need to continue validating the algorithm with labeled data. NAB
provide a lot of files with data, but we don’t get enought time to inspect all
the files. Also we need to define when we classify the results of the Deviations

4

Figure 3: Deviations from the Benford Theoretical Curve in the NAB data

from the Benford theorical curve as a real anomaly.
An important advantage of this method is that malware cannot easily

adapt their communication pattern to conform to the logarithmic distribution
of first digits.

6 Future Work

We want to analyze more the utility of this law, we want to compare the
results of the Deviations from the Benford theorical curve with the octets in
the same flows.

Also, we will explore new approaches to find new techniques. Implement
these techniques for anomaly detection to our collection of flows from UPR’s
network, and compare results with the results of current techniques. If those
techniques are effective we can use it in real time flow collection and build
an alerting system to notify the anomalies as soon as they are detected.

Acknowledgement

This work is supported by the scholarship Academics and Training for the
Advancement of Cybersecurity Knowledge in Puerto Rico (ATACK-PR) sup-
ported by the National Science Foundation under Grant No. DUE-1438838.

5

References

[1] Bianca Colón-Rosado, Humberto Ortiz-Zuazaga. Techniques for Anomaly
Detection in Network Flows. 2014.
http://figshare.com/articles/Techniques_for_Anomaly_

Detection_in_Network_Flows/1424475 http://ccom.uprrp.edu/

~humberto/megaprobe/tag/flows.html

[2] Iván Garćıa, Humberto Ortiz-Zuazaga. Techniques for Anomaly De-
tection in Network Flows. 2013. http://ccom.uprrp.edu/~humberto/

research/anomaly-detection.pdf

[3] Bianca Colón-Rosado, Humberto Ortiz-Zuazaga. Techniques for Anomaly
Detection in Network Flows: Benford’s Law 2015.

[4] Bingdong Li, Jeff Springer, George Bebis and Mehmet Hadi Gunes. A
survey of network flow applications. Journal of Network and Computer
Applications, 2013. doi:10.1016/j.jnca.2012.12.020

[5] Lakhina Anukool, Mark Crovella, and Christophe Diot. Characterization
of network-wide anomalies in traffic flows. doi=10.1.1.92.7738, 2004.

[6] Laleh Arshadi and Amir Hossein Jahangir. Benford’s law behavior of
internet traffic. Journal of Network and Computer Applications, 2013.
doi:10.1016/j.jnca.2013.09.007.

[7] Ron Bandes, Timothy Shimeall, Matt Heckathorn, Sidney Faber (2014)
Using SiLK for Network Traffic Analysis. CERT Coordination Center.
2014.
https://tools.netsa.cert.org/silk/

http://tools.netsa.cert.org/silk/analysis-handbook.pdf

[8] Plotly. https://plot.ly/

[9] NAB. Numenta Anomaly Benchmark
http://arxiv.org/pdf/1510.03336v4.pdf

https://github.com/numenta/NAB

[10] Documented Steps. bit.ly/stepsNAB

6

http://figshare.com/articles/Techniques_for_Anomaly_Detection_in_Network_Flows/1424475
http://figshare.com/articles/Techniques_for_Anomaly_Detection_in_Network_Flows/1424475
http://ccom.uprrp.edu/~humberto/megaprobe/tag/flows.html
http://ccom.uprrp.edu/~humberto/megaprobe/tag/flows.html
http://ccom.uprrp.edu/~humberto/research/anomaly-detection.pdf
http://ccom.uprrp.edu/~humberto/research/anomaly-detection.pdf
https://tools.netsa.cert.org/silk/
http://tools.netsa.cert.org/silk/analysis-handbook.pdf
https://plot.ly/
http://arxiv.org/pdf/1510.03336v4.pdf
https://github.com/numenta/NAB
bit.ly/stepsNAB

7 Appendix

1 #! / usr / bin /env python
2

3 # Research I n v e s t i g a t i o n : Spring 2015−2016
4 # Techniques f o r Anomaly Detect ion us ing Benford ’ s Law
5 #
6 # Using the data provided by NAB (https : // github . com/

numenta/NAB)
7 # we w i l l a n a l i z e the r e s u l t s o f the Benford ’ s Law .
8 #
9 import math

10 from sys import argv
11

12 de f s ign i f i cantNumber (num) : #r e c i e v e 0 .0024
13 number = num. s p l i t (’ . ’) # ’0 ’ ’0024 ’
14 aDot = number [1] # ’0024 ’
15 f o r d in range (0 , l en (aDot)) :
16 i f aDot [d] != ’ 0 ’ :
17 r e turn aDot [d]
18 e l s e :
19 pass
20

21 de f howManyNumbers(l i s t C o u n t e r) :
22 allNum = [] # L i s t to put a l l the numbers
23 diNum = [] ∗ 10 # L i s t to put counts o f numbers
24

25 f o r i in range (0 , l en (l i s t C o u n t e r)) :
26 allNum . append (i n t (l i s t C o u n t e r [i])) # Change s t r i n g s

f o r numbers
27

28 totalNum = len (allNum) # Total o f numbers
29 f o r c in range (1 ,10) :
30 diNum . i n s e r t (c , 1 . 0 ∗ allNum . count (c) /totalNum)
31

32 r e turn diNum
33

7

34 de f benford (l i s t C o u n t e r) :
35 allNum = [] # L i s t to put a l l the numbers
36 diNum = [] ∗ 10 # L i s t to put counts o f numbers
37 f o r i in range (0 , l en (l i s t C o u n t e r)) :
38 allNum . append (i n t (l i s t C o u n t e r [i])) # Change s t r i n g s

f o r numbers
39 f o r c in range (1 ,10) :
40 diNum . i n s e r t (c , allNum . count (c))
41 r e turn diNum
42

43 de f rms (f req , expected) :
44 sum = 0
45 f o r i in range (l en (f r e q)) :
46 sum += (f r e q [i] − expected [i]) ∗∗2
47 r e turn math . s q r t (sum)
48

49 ## main
50 i f (l en (argv) == 4) :
51 f i l ename = argv [1]
52 columnNumber = i n t (argv [2]) − 1
53 windowSize = i n t (argv [3])
54

55 with open (f i l ename) as f :
56

57 content = f . read () . s p l i t l i n e s ()
58

59 f . c l o s e ()
60

61 value = [] # For the va lue s
62 f D i g i t = [] # For the f i r s t s i g n i f i c a n t d i g i t
63

64 # Take the only va lue s o f the l i n e
65 # 1 . S t a r t s in l i n e 1 because l i n e 0 conta in column

t i t l e . (range (1 . . .)
66 ## timestamp , value , anomaly score , raw score , l abe l , S (t)

reward low FP rate , S (t) reward low FN rate , S (t)
s tandard

67

8

68 # 2 . The value i s p o s i t i o n e d in the second column . (.
s p l i t (’ , ’) [1]) columnNumber should be 1 .

69 ## 2015−09−01
1 3 : 4 5 : 0 0 , 3 . 0 6 , 0 . 0 3 0 1 0 2 9 9 9 6 6 5 9 , 1 . 0 , 0 , 0 . 0 , 0 . 0 , 0 . 0

70 f o r i in range (1 , l en (content)) : # 1 .
71 i f f l o a t (content [i] . s p l i t (’ , ’) [columnNumber]) !=

i n t (0) :
72 value . append (content [i] . s p l i t (’ , ’) [columnNumber])

2 .
73 e l s e :
74 pass
75

76 # To that values , j u s t s e l e c t the f i r s t s i g n i f i c a n t
d i g i t

77 f o r j in range (0 , l en (va lue)) :
78 i f va lue [j] . i s d i g i t () == True : # For i n t va lue s
79 i f va lue [j] [0] . i s d i g i t () == True :
80 f D i g i t . append (value [j] [0])
81 e l s e :
82 pr in t ” Aler t Anomaly : va lue = %d” % (value [j])
83 e l s e : # For f l o a t va lue s
84 i f va lue [j] . s p l i t (’ . ’) [0] != ’ 0 ’ : # Save the

l e f t dot number f o r a number l i k e 12 .003
85 f D i g i t . append (value [j] . s p l i t (’ . ’) [0] [0]) # From

12.003 only save the 1
86 e l s e : # Save the r i g h t dot number

f o r a number l i k e 0 .0034
87 f D i g i t . append (s ign i f i cantNumber (va lue [j]))
88

89

90 expected = [math . l og (1 . 0/ d+1.0 ,10) f o r d in range
(1 ,10)]

91

92 ### ONLY BENFORD GRAPH
93 #bVal = benford (f D i g i t)
94 #f o r n in range (0 , l en (bVal)) :
95 # pr in t n+1, bVal [n] , expected [n]
96 ###

9

97

98

99 f o r i in range (l en (f D i g i t) − windowSize) :
100 valuesFD = howManyNumbers(f D i g i t [i : i+windowSize])
101 pr in t content [i] . s p l i t (’ , ’) [0] , rms (valuesFD ,

expected)
102 # The timestamp i s in the f i r s t column , that ’ s why

content [i] . s p l i t (’ , ’) [0]
103

104 e l s e :
105 pr in t ””
106 pr in t ”Need to prov ide the name o f the f i l e that have

the data ”
107 pr in t ”and in what column i s the value data ”
108 pr in t ”Example : ”
109 pr in t ”timestamp , value , anomaly score , raw score , l abe l ,

S (t) reward low FP rate ”
110 pr in t ”The value column i s the second ”
111 pr in t ””
112 pr in t ”Format to wr i t e the miss ing in fo rmat ion ”
113 pr in t ”$ python benford−NAB. py f i leName columnNumber

windowSize”
114 pr in t ”$ python benford−NAB. py numenta occupancy 6005

. csv 2 100”
115 pr in t ””

10

	Description
	Background
	Benford's Law

	Methodology
	Results
	Conclusion
	Future Work
	Appendix

