
Diffhash

Angel Abdiel Sanquiche-Sanchez

May 4, 2019

1 Abstract

Here we propose an innovative way to find deferentially expressed genes straight
from sequencer output. Since assembling can be a very computationally expen-
sive process when not working with arbitrary data, wouldn’t it be convenient
to assemble only the information that what want and leave behind the useless
data. Using a bit of hashing, counting and analyzing we can achieve this.

2 Introduction

The field of bioinformatics faces significant problems with the size, quality and
structure of the data extracted from the tissue of organisms of interest. Shotgun
sequencing is a method that’s used to reduce the time needed to sequence the
entire sample of an organism. This usually requires that the data be assembled
before anything is done. This is due to the very nature of of shotgun sequencing.
Instead of reading the entire sequence from start to end, we shred the sequence
into fragments and read as many fragments as we can, until we reach an amount
where we can statistically say that we have enough coverage of the sequence to
meet the requirements of the experiment were conducting.

Afterwards we would start our traditional pipeline, which in the case is an
adaptation of the eel-pond for mRNAseq[1] we call the escambron protocol[2]
both implement the khmer protocols[5]. The protocol is setup in various steps.
Quality assesment with fastqc[3], trimming with trimmomatic[4], normalizing
with normalize-by-median from khmer[7], interleaving with interleave-reads also
from khmer[7], assembling using trinityrnaseq[9], transrate[12] to rate the in-
put reads, salmon[11] to quantify and finally extracting expressed genes with
edgeR[13]. This is would be a standard pipeline in a differential expresion anal-
isys experiment.

3 Methodology

Our new pipeline differential hash expression or ”Diffhash” will change some of
this work flow. The initial idea is that assuming a proper random sample of

1



shotgun sequencing data will cover the entire sequence evenly. Now for a pair of
sequences A and B, our null hypothesis is that the distribution of a particular
kmer[6] in A is similar to its distribution in B. If the kmers distribution differs
significantly it can be considered deferentially expressed if not it can be ignored.
With this we can avoid assembling the full sequence and only do a targeted
assembly of the regions of interest.

In practice we are using Julia a high-level general-purpose dynamic program-
ming language designed for high-performance numerical analysis and computa-
tional science. It version 1.0 released not very long ago that’s as good a reason
as any to start using it. We will be using the BioSequences package to work
with the data and edgeR[13] to do the analysis and Blast to do blast things.
Finally there are some shell and python scripts to do some of the grunt work of
interleaving and finding matching blast results.

To do a proper comparison of both pipelines we run the standard pipeline
until completion to generate known good data. Next we copy the data just after
it went through the trimming stage with trimmomatic[4]. This is to remove
any bad data that the sequencer knowingly misread and placed ”N” noting its
placement but not knowing which base corresponds (N can represent any of
A,C,T,G).

Now we start Diffhash by generating an empty dictionary. We then go read
through every file of sequence A and extract every kmer, count how many times
it appears in each file of sequence A and do the same with sequence B. This will
generate a hashcount file we pass to our analysis with edgeR[13] which generates
a deferentially expressed kmer file. This is where we can now get creative. We
can take this deferentially expressed kmer file and turn it into a fasta file by
assigning each kmer a header in the form of the kmers line number in the file.
Now we can assemble this file with Abyss[10]. This is similar to what Kevlar[8]
does. Alternatively we can do a more traditional approach where we take the
kmer file and once again go through sequence A and B files. This time we will
extract all reads that all the kmers in that read are deferentially expressed.
We then use these new filtered list to assemble using trinity[9]. Both of these
methods are less computationally complex that to assemble the entire sequence
and then do the differential expression analysis. Both have been done in this
experiment.

4 Results

Once we have our assembled sequences we need to compare them with the known
good sequence. To do this we generated a blast database using ncbi blast plus on
the three sequences. Then we blast both sequences to the known good sequence
database, we do the reverse blasting our known good against both sequences
and the both sequences to each other just to verify how similar they are to each
other. This will generate 2 data frames per two comparisons for a total of 6.
With the first column of these data frames being the label in the first sequence
and its best match in the other sequence. To finish up we go to extract the

2



first and second column of both of those files flip one or the other to match the
sequences and find the intersection and we get these:

long reads normal reads
0 TRINITY DN1 c0 g1 i1 TRINITY DN21 c0 g3 i1
1 TRINITY DN0 c0 g1 i1 TRINITY DN17 c0 g1 i1
2 TRINITY DN0 c0 g1 i1 TRINITY DN17 c0 g1 i1
3 TRINITY DN0 c0 g1 i1 TRINITY DN17 c0 g1 i1
4 TRINITY DN0 c0 g1 i1 TRINITY DN17 c0 g1 i1
5 TRINITY DN13 c0 g1 i1 TRINITY DN19 c0 g1 i1
6 TRINITY DN18 c0 g1 i1 TRINITY DN16 c0 g1 i21
7 TRINITY DN11 c0 g1 i1 TRINITY DN22 c0 g2 i2
8 TRINITY DN5 c0 g1 i1 TRINITY DN22 c0 g1 i1
9 TRINITY DN6 c0 g1 i1 TRINITY DN23 c0 g1 i1
10 TRINITY DN15 c0 g1 i1 TRINITY DN21 c0 g2 i4
11 TRINITY DN3 c1 g1 i1 TRINITY DN14 c0 g1 i2
12 TRINITY DN4 c0 g1 i1 TRINITY DN21 c0 g1 i7
13 TRINITY DN14 c0 g1 i1 TRINITY DN20 c0 g1 i2

short reads long reads
0 4 TRINITY DN13 c0 g1 i1
1 135 TRINITY DN14 c0 g1 i1
2 301 TRINITY DN1 c0 g1 i1
3 699 TRINITY DN11 c0 g1 i1
4 816 TRINITY DN10 c0 g1 i3
5 959 TRINITY DN15 c0 g1 i1
6 2270 TRINITY DN5 c0 g1 i1
7 2982 TRINITY DN3 c1 g1 i1
8 3438 TRINITY DN18 c0 g1 i1
9 3747 TRINITY DN4 c0 g1 i1
10 3907 TRINITY DN16 c0 g1 i1
11 3914 TRINITY DN12 c0 g1 i1
12 3924 TRINITY DN6 c0 g1 i1
13 4290 TRINITY DN0 c0 g1 i1
14 4745 TRINITY DN2 c0 g1 i1

3



normal reads short reads
0 TRINITY DN23 c0 g1 i1 1907
1 TRINITY DN23 c0 g1 i2 2097
2 TRINITY DN23 c0 g2 i1 3924
3 TRINITY DN13 c0 g1 i2 2712
4 TRINITY DN19 c0 g1 i1 3907
5 TRINITY DN27 c0 g1 i1 3111
6 TRINITY DN21 c0 g1 i6 3747
7 TRINITY DN21 c0 g3 i1 301
8 TRINITY DN21 c0 g2 i4 959
9 TRINITY DN12 c0 g1 i1 500
10 TRINITY DN18 c0 g1 i4 3848
11 TRINITY DN8 c0 g1 i1 105
12 TRINITY DN11 c0 g1 i1 3688
13 TRINITY DN2 c0 g1 i1 410
14 TRINITY DN16 c0 g1 i21 3438
15 TRINITY DN15 c0 g1 i1 4812
16 TRINITY DN17 c0 g1 i3 4290
17 TRINITY DN17 c0 g1 i4 159
18 TRINITY DN17 c0 g2 i1 1008
19 TRINITY DN10 c0 g1 i1 2195
20 TRINITY DN20 c0 g1 i2 135
21 TRINITY DN20 c0 g1 i3 3295
22 TRINITY DN20 c0 g1 i5 2896
23 TRINITY DN4 c0 g1 i2 2719
24 TRINITY DN14 c0 g3 i1 5130
25 TRINITY DN14 c0 g1 i2 2982
26 TRINITY DN14 c0 g2 i2 3022
27 TRINITY DN22 c0 g1 i1 2270
28 TRINITY DN22 c0 g2 i2 5105
29 TRINITY DN22 c0 g2 i3 699

5 Conclusion

Both of the direct kmer sequence and the filtered sequence generated reciprocal
hits in the known good sequence. This is to be expected since were assembling
only what we expect to be deferentially expressed in the sequence. And the
very fact that these tables are not empty means that there is something to
this method. To give even more weight to this concept Kevlar[8] does variant
discovery on genomes in a similar fashion using differential expression analysis
without assembling the sequence first. Additionally the direct and the filtered
sequences matched to each other more thoroughly than how they matched to
the known good sequence. This is also to be expected since they conceptually
should be the same sequence.

4



6 Acknowledgements

Humberto Ortiz-Zuazaga

• Benevolent dictator for life of Megaprobe.

• Primary investigator.

• Fount of knowledge I’ve been able to tap.

Louis F. Gil Acevedo

• Much more knowledgeable than me in the biological aspect.

• Stressed Diffhash and identified a significant breaking point.

The aether

• For being the source of the concept.

The rest of the Megaprobe lab team

• At times permit ed me to get my mind to reset and re tackle problems
with clarity.

• Made me have to give a good example as one of the seniors in the lab.

7 Future Work

Diffhash is at a very early stage in development. At this point I can easily
identify several improvements or features that could be added and explored.

• Parallelizing operations at the read level. Diffhash spends a significant
amount of time hashing and not io blocked.

• Utilizing a concept like Count–min sketch in the dictionary.

• Determining a more robust analysis, preferably one more focused on kmer
distribution.

• Trying assembling with kmers instead of full reads like Kevlar. One thing
to note, there’s a limit to how small read size software like trinity is willing
to work with.

• The experiment utilized a 100

• Another interesting experiment is comparing the direct kmer and filtered
read assemblies to see how they change and if their interchangable or
equilevant.

5



References

[1] eel-pond for mrnaseq. https://eel-pond.readthedocs.io/en/latest/.

[2] escambron protocols. https://escambron-
protocols.readthedocs.io/en/latest/.

[3] S. Andrews. Fastqc. a quality control tool for high throughput sequence
data, 2010.

[4] Anthony M. Bolger, Bjoern Usadel, and Marc Lohse. Trimmomatic: a
flexible trimmer for Illumina sequence data. Bioinformatics, 30(15):2114–
2120, 04 2014.

[5] C. Titus Brown, Camille Scott, Michael R. Crusoe, Leigh Sheneman, Josh
Rosenthal, and Adina Howe. khmer-protocols 0.8.4 documentation. 12
2013.

[6] Phillip E. C. Compeau, Pavel A. Pevzner, and Glenn Tesler. How to apply
de bruijn graphs to genome assembly. Nat Biotechnol, 29(11):987–991, Nov
2011. 22068540[pmid].

[7] Michael R. Crusoe, Hussien F. Alameldin, Sherine Awad, Elmar Bucher,
Adam Caldwell, Reed Cartwright, Amanda Charbonneau, Bede Constan-
tinides, Greg Edvenson, Scott Fay, Jacob Fenton, Thomas Fenzl, Jordan
Fish, Leonor Garcia-Gutierrez, Phillip Garland, Jonathan Gluck, IvÃ¡n
GonzÃ¡lez, Sarah Guermond, Jiarong Guo, Aditi Gupta, Joshua R. Herr,
Adina Howe, Alex Hyer, Andreas HÃrpfer, Luiz Irber, Rhys Kidd, David
Lin, Justin Lippi, Tamer Mansour, Pamela McA’Nulty, Eric McDon-
ald, Jessica Mizzi, Kevin D. Murray, Joshua R. Nahum, Kaben Nanlohy,
Alexander Johan Nederbragt, Humberto Ortiz-Zuazaga, Jeramia Ory, Ja-
son Pell, Charles Pepe-Ranney, Zachary N Russ, Erich Schwarz, Camille
Scott, Josiah Seaman, Scott Sievert, Jared Simpson, Connor T. Skenner-
ton, James Spencer, Ramakrishnan Srinivasan, Daniel Standage, James A.
Stapleton, Joe Stein, Susan R Steinman, Benjamin Taylor, Will Trim-
ble, Heather L. Wiencko, Michael Wright, Brian Wyss, Qingpeng Zhang,
en zyme, and C. Titus Brown. The khmer software package: enabling
efficient nucleotide sequence analysis. 08 2015.

[8] Fereydoun Hormozdiari Daniel S. Standage, C. Titus Brown.

[9] Manfred G. Grabherr, Brian J. Haas, Moran Yassour, Joshua Z. Levin,
Dawn A. Thompson, Ido Amit, Xian Adiconis, Lin Fan, Raktima Ray-
chowdhury, Qiandong Zeng, Zehua Chen, Evan Mauceli, Nir Hacohen,
Andreas Gnirke, Nicholas Rhind, Federica di Palma, Bruce W. Birren,
Chad Nusbaum, Kerstin Lindblad-Toh, Nir Friedman, and Aviv Regev.
Full-length transcriptome assembly from rna-seq data without a reference
genome. Nature Biotechnology, 29:644 EP –, May 2011.

6



[10] Shaun D. Jackman, Benjamin P. Vandervalk, Hamid Mohamadi, Justin
Chu, Sarah Yeo, S. Austin Hammond, Golnaz Jahesh, Hamza Khan, Lauren
Coombe, Rene L. Warren, and et al. Abyss 2.0: resource-efficient assembly
of large genomes using a bloom filter. Genome Research, 27(5):768–777,
Feb 2017.

[11] Rob Patro, Geet Duggal, Michael I Love, Rafael A Irizarry, and Carl Kings-
ford. Salmon provides fast and bias-aware quantification of transcript ex-
pression. Nature Methods, March 2017.

[12] Smith-Unna R., C. Boursnell, R. Patro, J. M. Hibberd, and S. Kelly. Tran-
srate: Reference-free quality assessment of de novo transcriptome assem-
blies. 26(8):1134–1144, 2016.

[13] Mark D. Robinson, Davis J. McCarthy, and Gordon K. Smyth. edger:
a bioconductor package for differential expression analysis of digital gene
expression data. Bioinformatics, 26(1):139–140, Jan 2010. 19910308[pmid].

7


