
The importance and implementation of rich

documentation in bioinformatics software projects

Omar Rosado Ramı́rez

May 12, 2019

Abstract

Large software projects, specifically computational biology research
projects, require a rich documentation scheme that can guide generally
any user through the process of downloading, installing and running the
project. Kevlar, a genomic sequencing framework is an example of a large
project that has a documentation that falls behind it’s size. Upon down-
loading Kevlar, the installation process takes the user to multiple pages
that only lead users to copy paste the first command they find to see if
it works. Installation of software should be basic and smooth, or users
might seek software elsewhere(proprietary, not free software with an easy
install). Considering the nature of the Kevlar project, it highly needed a
user friendly documentation that let users to a successful, first try instal-
lation that would result in users actually using the software. This paper
focuses on successfully setting up and running Kevlar on multiple plat-
forms while also creating a documentation that better suits the potential
user traffic of an open source project of its nature and size.

You can download the full Kevlar with the new documentation here:
https://github.com/afrotonder/kevlar

Introduction

Genome sequencing and sequence assembly are a few of the most hot topics
in computational biology, bioinformatics and computer science overall. Due to
the management of large genomic data, projects of this nature tend to get big
fast and as a consequence require much maintenance and a rich documentation.
The general problem in genomic data handling is the amount of computational
power required to analyze large amounts of data with the least amount of errors,
which require large and complex algorithms.

Recently, many open source genome management tools have been released
for the public to use as research software. As mentioned, the documentation
of these research software requires for them to be insightful, productive, and
accessible considering the user traffic it might attract and the possible longevity
of the project. Open source projects are also made to be used by others who
do not necessarily have the same experience as the author(s), which is another
reason a good documentation is key in making good research software, or any
software to be exact. As stated by Dr. Winston Royce in his paper Managing
the Development of Large Software Software Systems: [1], ”Without good doc-

1

https://github.com/afrotonder/kevlar
https://github.com/afrotonder/kevlar


umentation the software must be operated by those who built it”(Royce, W.
1970, p.5).

Kevlar [2], a newly released open source genome sequencing framework is an
example of a big, successful project with a documentation that seems ’default’
[1]. An online documentation is provided, although it is scattered between a
website and various githubs, and it takes a while to get the software running.
A README is available with the project bundle and on its official github, but
they both lead to the same array of links and github accounts. Once Kevlar
is set, it becomes the ultimate framework for genomic data handling. Along
with an integrated CLI with subcommands and an automated Python-driven
workflow, Kevlar is capable of much more than its documentation structure
show.

Re-documenting Kevlar will probably increase its productivity by enabling
users to easily install and run the software. Including a full documentation
will also likely enable users to run Kevlar without leaving the development
environment, something not possible before this paper.

Methods

Open source projects such as Kevlar often require a work environment with all
its dependencies available. After setting up an environment and installing all
dependencies, software should normally run. If all dependencies are not listed
together, something is bound to get lost between the lines. Documentation of
each step is required to maintain the project integrity on every installation. To
better structure a project, work done must be documented in two important
places: a README and a Manual. README’s are plaintext files that hold
information pertinent to the software such as a description of the software,
downloading the software, the steps necessary to get the project or
software running, etc. Manuals or ’Man pages’ are another form of documen-
tation found in UNIX environments that act as a ’quick help’ and contain a more
mechanical explanation of the software it represents, detailing each command
if available and providing running information along with examples. Although
it is not a requisite to have both methods of documentation, having both will
greatly increase the ease of use of any software project.

Implementing Documentation Types

After all software requirements were gathered, documented and installed, test-
ing could commence. Kevlar has the ability to be run in a step-by-step manner
to better gather data from each part of the project and also in a workflow man-
ner that bundles all of Kevlar’s functionalities and runs them as one program.
The step-by-step manner is run with the Kevlar CLI, a command based work-
flow that lets you call each of Kevlar’s functionalities such as counting kmers,
aligning contigs and calculating a likelihood score for unique reads (see [2], p.8-
10). To run the Kevlar CLI, the user had to go to a separate URL to find all
of the available commands with examples. Although Kevlar provides a ’help’
command that displays a list of these CLI commands, they are displayed with-
out flags or possible parameters. To solve this, a UNIX Man page entry was
created using the online CLI documentation mentioned above. Man pages have

2



the advantage of being available offline, in-terminal and are completely editable
if anything should be added, making Kevlar more accessible users.

The workflow manner is handled differently and requires an extra software
dependency called Snakemake [3]. Setting up Snakemake is a bit line consuming,
so these steps we’re not added to the Man page. Instead a new section was
created in the project README specifically for the Snakemake workflow along
with each step and command available [4], plus another dependency [5] found
along the way .

After documenting both ways of running Kevlar, the project README
seemed to be taking a new direction. Kevlar’s old README was a short,
linked description of what the software did, where to get it, and where the doc-
umentation was. Essentially, the README was pretty ’default’. The next step
was to revamp the README into a new, fully informative source that helps any
user install, run and enjoy Kevlar. The new README was divided into 7 ma-
jor parts: Description of project, Setup Virtual environment, Download Kevlar,
Download Genomic Test data, Running Kevlar, Setup Development Environ-
ment, and Miscellaneous Information. Each part was derived from all different
parts and links of Kevlar’s documentation and only excludes each Kevlar CLI
command, which would have made the README too long.

Testing the software with new documentation

The restructuring of Kevlar’s README has improved the projects productivity.
The next step was testing Kevlar with the new documentation on different
platforms or operating systems. Kevlar and it’s dependencies are pure Python
and depend on a UNIX-like environment to run in. Microsoft Windows is one
of the most used operating systems, but it has no easy way of running Kevlar
unless you install a virtual machine, which is why this operating system was
discarded for testing. UNIX-like operating systems chosen to test we’re the two
most popular to users: macOS and Ubuntu.

Ubuntu: Test passed

Following Kevlar’s new README, Ubuntu received a smooth installation of all
dependencies and the framework itself. Privilege errors may occur, but that
depends on how and where the virtual environment was configured.

macOS: Test failed

With Kevlar’s old README, installing the software led to multiple errors. On
creating a virtual environment and installing all dependencies, snakemake was
the only software not installing. It was apparently due to a dependency of
snakemake, which depends on a Python module called cython that has a line of
code considered deprecated in Python3.7. It is a recent and common error seen
in several different Python projects like [6] and [7], and is solved by installing
Python3.6 as seen in this [8] other Python project with a similar error. This
error has not been officially corrected, so Python3.6 will be needed for Kevlar
on macOS in the time being.

After eliminating the error mentioned, the Python package manager pip
started giving errors due to version incompatibility. The pip package installed

3



was done so with Python2, which is currently at the end of it’s lifetime and
developers are encouraging abandoning it for the more stable Python3. Due
to this, pip was completely removed from the Kevlar virtual environment and
reinstalled with Python3 for future use. After these steps were documented and

Documenting these steps provides a clear path for those looking to install
and use Kevlar on any UNIX-like platform. With Kevlar’s newly documented
README, re-trying the full installation resulted in error-free success.

Results

Following Kevlar’s documentation proved to be challenging. Dispersed between
two different websites and 3 different githubs, the setup took at least one hour.
Running Kevlar took about twenty minutes due to the running commands and
specifications being in two pages of a same documentation site and a github
account. The project is excellently built, but was probably built by a group
of developers and is being used by the same group of developers, which do not
necessarily require a ’by-the-hand’ walkthrough on how to install and run the
software.

Running Kevlar in two different operating systems led to different results,
adding additional steps to the installation process. The operating system ubuntu
displayed an easy install while macOS backfired. Python version conflicts arose
on macOS and some modules had to be replaced manually, causing the process
of installation to become longer. Without testing and documentation on differ-
ent platforms, software projects are limited to the environment it was created
in, which isn’t always similar between users with different versions of different
operating systems on different computers.

Implementing a new documentation scheme to Kevlar improves it’s produc-
tivity by making it simple to install. Instead of having to visit five different
websites to setup Kevlar, now users only need to have the project locally and
all the information needed is available. The new README provides a step by
step process on setting up a virtual environment, installing all dependencies and
running the Kevlar Snakemake Workflow. A UNIX Manual also included in the
project improves Kevlar’s user experience by enabling them to access each CLI
command in-terminal and with examples.

Conclusions

Open Source genome sequencing research projects are becoming more common
every day, which opens a large field for many users to contribute in. When
projects become sufficiently large and require maintenance, the original devel-
opers might not be contributors anymore. This presents a problem for these
types of projects if no well structured documentation scheme is implemented.
Users might not all be experts on the subject, so it is imperative to have a
well defined README that contains at least the following parts in detail: de-
scription, how to download, how to install, how to use and examples.
Including specific and important steps such as software version differences and
possible platform dependencies can make installing and using any software less
of a pain for experienced and inexperienced users alike.

4



Future Work

Considering Python2.7’s deprecation at the end of this year(2019), Kevlar should
be adapted to Python3 to avoid future problems. It is imperative to document
this change, for the contrary would imply users running the software to find
many errors that are not easy to dig through.

Acknowledgements

I would like to thank Dr. Humberto Ortiz-Zuazaga for his constant support and
mentorship. I would love to specially thank him for accepting me into his lab
a few weeks late into the semester after discovering I was missing just 1 credit
to graduate. A big thank you to Dr. Daniel Santange for indirectly giving me
the chance to contribute to an open source project. Also, I would like to thank
the students at the megaprobe who helped me shape my project during the
semester.

References

[1] W. W. Royce. Managing the development of large software systems: Con-
cepts and techniques. In Proceedings of the 9th International Conference on
Software Engineering, ICSE ’87, pages 328–338, Los Alamitos, CA, USA,
1987. IEEE Computer Society Press.

[2] Daniel S. Standage, C. Titus Brown, and Fereydoun Hormozdiari. Kevlar: a
mapping-free framework for accurate discovery of de novo variants. bioRxiv,
2019.

[3] Johannes Köster and Sven Rahmann. Snakemake—a scalable bioinformatics
workflow engine. Bioinformatics, 28(19):2520–2522, 08 2012.

[4] GoogleAPIs. kevlar-workflow. https://github.com/kevlar-dev/kevlar/
tree/master/kevlar/workflows/mark-I, 2019.

[5] Heng Li. Burrow-wheeler aligner(bwa). https://github.com/lh3/bwa,
2019.

[6] Sheffield Machine Learning Software. Gpy. https://github.com/

SheffieldML/GPy/issues/649, 2018.

[7] scikit-learn contrib. py-earth. https://github.com/

scikit-learn-contrib/py-earth/issues/191, 2018.

[8] GoogleAPIs. google-cloud-python. https://github.com/googleapis/

google-cloud-python/issues/3884, 2017.

5

https://github.com/kevlar-dev/kevlar/tree/master/kevlar/workflows/mark-I
https://github.com/kevlar-dev/kevlar/tree/master/kevlar/workflows/mark-I
https://github.com/lh3/bwa
https://github.com/SheffieldML/GPy/issues/649
https://github.com/SheffieldML/GPy/issues/649
https://github.com/scikit-learn-contrib/py-earth/issues/191
https://github.com/scikit-learn-contrib/py-earth/issues/191
https://github.com/googleapis/google-cloud-python/issues/3884
https://github.com/googleapis/google-cloud-python/issues/3884

