2					3	0	1	2	3	0	1	2	3	0	1	2	3	0	1	2	3	0	1	2	3	0	1	2	3	0	1	2	3	2	2	2			1
		1	10	RI	C O ·	REC	2			1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1		Å	A			S	0		2
0	1						1)			2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2	31					R	N)		
1	2	5/1			2	3					0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	<u>AR</u>			12	X		3	0
2			13		TINT			R		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1					L.	P	10	1
			1		1.18	**************************************		6		1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2						ţ¢	1	2
0								P		2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		O.			4	y	9		
1		Ŵ	V	tia si		5	J)	1			0	1	2		0	1	2		0	1	2		0	1	2		0	1	2				ci	en	cia	de			0
2				· 19	03	-	1			0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2	CØ	m	Jüi	tõ	3	0	1
	0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2	3	0	1	2	3	0	1	2
0	1	2	3	0	1	2		0	1	2		0	È	2		0	1	2	3	0	1	2		0	1	2		0	1	2	3	0	1	2	3		1	2	
1	2		0		t	1	P		Ν		1		1	3	2	_1	2	З	20	-1	2	ſ	P		ſ	3		2	2				2	ſ	3)	1	2		0
2		0	1	J	Ľ	, L			3	0		J	8	Ċ.	1	2	6	/d	1		з	L	1	5		10	1	C			L	Y	3	L	1	2		0	1
	0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2	3	0	1	2		0	1	2	3	0	1	2		0	1	2
0	1	2		0	1	2		0	1	2			1	2	3	0	1	2	n i	0	1	2	3	0	1	2	3	0	1	2		0	1	2		0	1	2	
1	2		0	1	2		0	1	2		0		2	8	0	1		3		ſ	1 2 8	3			2	0	5	1	2		0	1	2		0	1	2		0
2		0	1	2		0	1	2		0	1	Z	3	0	-	2	3	0		2	В	9		2	3	0		2		0	1	2		0	1	2		0	1
	0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2
0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2	
1	2		0	1	2		0	1	2	3	Le.	1		3	0	1	$\frac{2}{d}$	3	0		ŋđ	3	0	1	2	3	9	1	2	3	0	1	2		0	1	2		0
2		0	1	2		0	1	Je		aı	Πē	Ę	P	ê	Ī	μ	Q	ę,	1^1	aj	i Q	6	Q	U I	Ĝ	23	1	vīc	J] i	ali	62	2		0	1	2		0	1
	0	1	2		0	1	2		0	1	2	3	0	1	2	3	O	1	2	3	0	1	2	3	0	1	2	3	0	1	2		0	1	2		0	1	2
0	1	2		0	1	2		0	1	2	3L	191	ve	rsi	ty	QI	Ľ	ue	rţc	Ъ ф	Ric	0 2-	3	КЮ	P	ΊĒ	ara	aş	1	2		0	1	2		0	1	2	
1	2		0	1	2		0	1	2		0	1	De	pa	rtr	ne	nt	of	C	or	np	ut	er	Sc	cie	nc	e	1	2		0	1	2		0	1	2		0
2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2	3	0	1	2		0	1	2		0	1	2		0	1	2		0	1
	0	1	2		0	1	2		0	1	2		0	1	2	3	0	1	2	3		1	2	3 D-	0	1	2		0	1	2		0	1	2		0	1	2
0	1	2		0	1	2		0	1	2																		0	1	2		0	1	2		0	1	2	
1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0
2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1
	0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2		0	1	2
0	1	2		0	1	2		0	1	2		0	1	2		0	1	2	3	0	1	2	3	0	1	2	3	0	1	2	3	0	1	2		0	1	2	

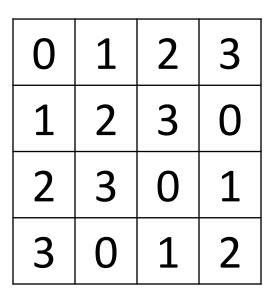
OUTLINE

- Introduction
- Latin Squares
- *r*-orthogonality
- *r_t*-orthogonality
- Our Projects
- Summary
- References
- Acknowledgements

LATIN SQUARES

 A latin square of order n is an n x n matrix containing n distinct symbols such that each symbol appears in each row and column exactly once.

Example.



□Theorem. There is a latin square of order n for each $n \ge 1$.

Why study latin squares?

- -Applications
- -Puzzles
- -It's fun!

A central problem in the theory of latin squares is to determine how many latin squares of each size exist.

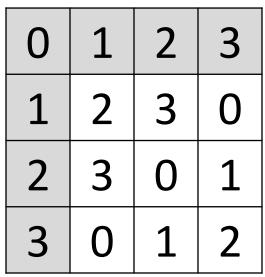
n	#LS
1	1
2	2
3	12
4	576
5	161,280
6	812,851,200
7	61,479,419,904,000
8	108,776,032,459,082,956,800
9	5,524,751,496,156,892,842,531,225,600
10	9,982,437,658,213,039,871,725,064,756,920,320,000
11	776,966,836,171,770,144,107,444,346,734,230,682,311,065,600,000

Taken from N. J. A. Sloane, **A002860**, *On-Line Encyclopedia of Integer Sequences* (1996-2008) <u>http://www.research.att.com/~njas/sequences/A002860</u>

TYPES OF LATIN SQUARES

- A latin square of order n is said to be reduced if its first row and first column are in the standard order 0, 1,..., n-1.
- A latin square of order n is said to be semi-reduced if its first row is in the standard order.

Example.



RLS of order 4

n	#RLS
1	1
2	1
3	1
4	4
5	56
6	9,408
7	16,942,080
8	5.35 x 10 ¹¹
9	3.78 x 10 ¹⁷
10	7.58 x 10 ²⁴
11	5.36 x 10 ³³

Taken from N. J. A. Sloane, **A000315**, *On-Line Encyclopedia of Integer Sequences* (1996-2008) <u>http://www.research.att.com/~njas/sequences/A000315</u>.

n	#RLS
1	1
2	1
3	1

Theorem. For any $n \ge 2$, $L_n = n! (n - 1)! I_n$

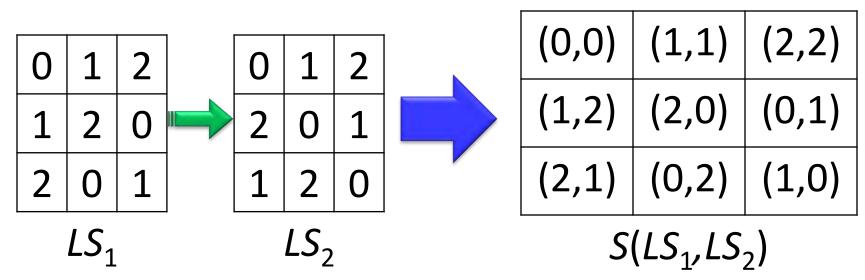
8	5.35 $\times 10^{11}$ G. Mullen & C. Mummert, 45.
9	3.78 x 10 ¹⁷
10	7.58 x 10 ²⁴
11	5.36 x 10 ³³

Taken from N. J. A. Sloane, **A000315**, On-Line Encyclopedia of Integer Sequences (1996-2008) http://www.research.att.com/~njas/sequences/A000315.

0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0
2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1
0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0
2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1
0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0
2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1
0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0
2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1
0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0
2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1
0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0
2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1
0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0
2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1
	r-	-0)	8 -	Γl	H	C)(60	0	Ν	IA	\		Т	Y	,															
2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	T	2	0	1	2	0	T	Z	0	1	2	0	I

SUPERIMPOSING LATIN SQUARES

- Given two latin squares of the same size we can superimpose them, that is, we can place or lay one latin square over the other to create a square of ordered pairs.
- Example.



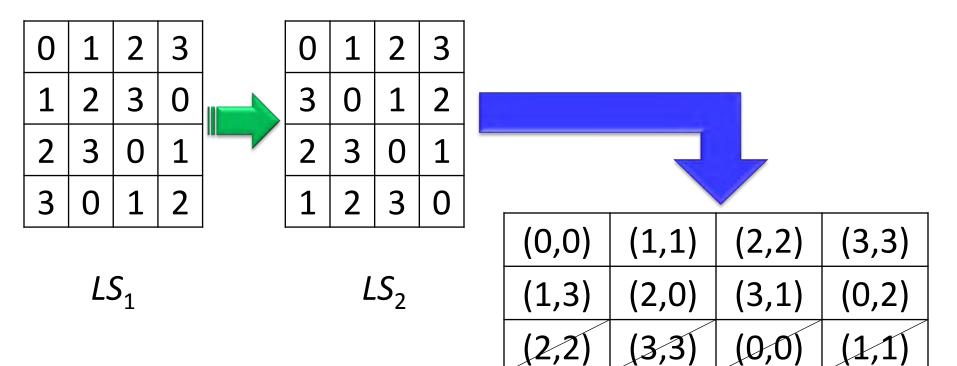
r–ORTHOGONALITY

r = P(LS_i, LS_j) is the number of distinct ordered pairs you get when you superimpose LS_i and LS_j.

• LS_i and LS_j are said to be *r*-orthogonal if $r = P(LS_i, LS_j)$.

r-ORTHOGONALITY

• **Example.** 8-orthogonal latin squares:



2,2

(3,)

 $S(LS_1, LS_2)$

1,3

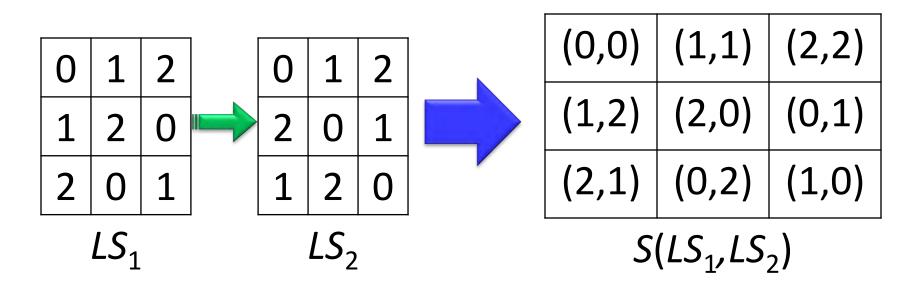
(3,3)

0,2

ORTHOGONAL LATIN SQUARES

 Two latin squares of order n are orthogonal if r = n².

Example:



 A set of mutually orthogonal latin squares (MOLS) is a set of two or more latin squares of the same order, all of which are orthogonal to one another.

• **Example.** {LS₁, LS₂, LS₃} is mutually orthogonal if $P(LS_1, LS_2)=n^2$, $P(LS_2, LS_3)=n^2$ and $P(LS_1, LS_3)=n^2$.

• Example:

0	1	2	3		0	2	3	1	0	3	1	2
1	0	3	2		1	3	2	0	1	2	0	3
2	3	0	1		2	0	1	3	2	1	3	0
3	2	1	0		3	1	0	2	3	0	2	1
		S ₁ P(L	S ₁ ,	LS ₂)=	_	5			3)=		S ₃	

• Example: Here we have a set of orthogonal latin

The concept of MOLS of a given order is important, because it is known that there exists a projective plane with *n* points if and only if there are n - 1 MOLS of order *n*.

P(LS₁, L_S) = 1.6. (Bose 1938). G. Mullen & C. Mummert, 62.

Questions:

Is there a collection of mutually orthogonal latin squares for every order?

If they exist, how big is the largest collection of mutually orthogonal latin squares for each order?

- Let N(n) denote the size of the largest collection of mutually orthogonal latin squares (MOLS) of order n (that exist).
- Theorem. $N(n) \ge 2$ for all n except 2 and 6. N(2) = 1 and N(6) = 1
- **Theorem.** $N(n) \le n-1$ for any $n \ge 2$.
- **>Theorem.** If q is a prime power, then N(q) = q-1.

 $q = p^r$, where p is a prime and $r \ge 1$

Question:

Are there *n* – 1 mutually orthogonal latin squares of order *n* if *n* is not a prime power?

MUTUALLY ORTHOGONAL LATIN SQUARES Question:

Are there mutually orthogonal latin

Conjecture. [The Prime Power Conjecture] For $n \ge 2$, N(n) = n - 1 if and only if *n* is a prime power.

G. Mullen & C. Mummert, 48.

.

.

r_t-ORTHOGONALITY

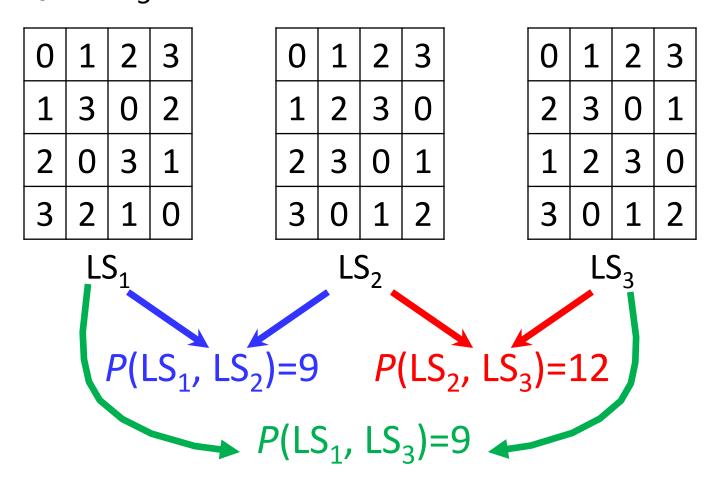
• Let $\{LS_1, ..., LS_t\}$ be a set of $t \ge 2$ latin squares. Then,

$$r_t = \sum_{i \neq j} P(LS_i, LS_j)$$

• Example. Let $\{LS_1, LS_2, LS_3\}$: $r_3 = P(LS_1, LS_2) + P(LS_1, LS_3) + P(LS_2, LS_3)$

r_t-ORTHOGONALITY

• **Example:** $r_3 = 9 + 12 + 9 = 30$

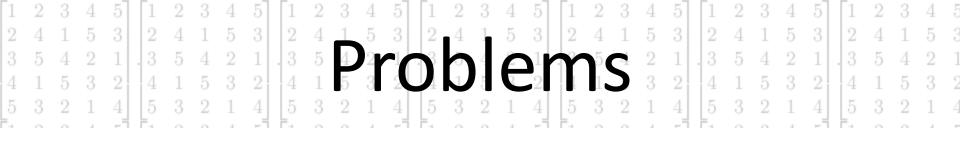


r_t-ORTHOGONALITY

The r_{t} -orthogonality is related to how "close" one is from getting projective planes. Thus, computing sets of latin squares of order n that give the maximum r_{f} -orthogonality, denoted by *M_i(n*), is an important problem.

 \rightarrow P(LS₁, LS₃)=9

3 0 1 2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	1	0	3	2	1	0
3			0	3	2	1	0	3	2	1	0	-	2	1	0		2	1	0	2	1	0	3	2	1
0			1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	3 0	2	1	0	3	2
1			2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	0	3	2	1	0	3
2			3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	1	0	3	2	1	0
3	ſ		0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	2	1	0	3	2	1
0			1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	3	2	1	0	3	2
1			2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	0	3	2	1	0	3
2			3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	1	0	3	2	1	0
3			0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	2	1	0	3	2	1
0	Г		1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	3	2	1	0	3	2
1			2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	0	3	2	1	0	3
2	Г		3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	1	0	3	2	1	0
3			0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	2	1	0	3	2	1
0			1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	3	2	1	0	3	2
1			2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	0	3	2	2	0	3
2			3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	1	0	3	2	1	0
3	1		0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	2	1	0	3	2	1
0	Г		1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	3 0	2	1	0	3	2
1			2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	0	3	2	1	0	3
2			3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	1	0	3	2	1	0
3			0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	2	1	0	3	2	1
0			1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	3	2	1	0	3	2
1			2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	0	3	2	1	0	3
2	C		3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	1	0	3	2	1	0
3			0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	2	1	0	3	2	1
0			1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	3	2	1	0	3	2
1			2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	0	3	2	1	0	3
2			3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	1	0	3	2	1	0
3			0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	2	1	0	3	2	1
0		200471	1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	3	2	1	0	3	2
1			2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	0	3	2	1	0	3
2			3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	1	0	3	2	1	0
3			0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	2	1	0	3	2	1
0			1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	3	2	1	0	3	2
2 3 0 1	0 1	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	0	3	2	1	0	3
3 0 1 2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	1	0	3	2	1	0
0 1 2 3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	2	1	0	3	2	1
1 2 3 0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	3	2	1	0	3	2
2 3 0 1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0	3	2	0	3	2	1	1	3



What is the maximum

 r_t -orthogonality, $M_n(t)$?

For n=6 we know these values for the $M_t(6)$

t	<i>M</i> _t (6)
2	34
3	96
4	188
5	300≤ <i>M</i> ₅(6) < 340

Taken from R. Arce & J. Cordova & I. Rubio. (2009)

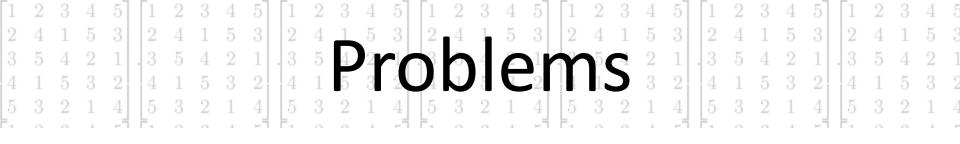
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 3 1 5 3 1 5 3 1 5 3 1 5 3 1 5 3 1 5 3 1 5 3 1 1 5 3 1 1 5 3 1 1 5 3 1 1 5 3 1 1 5 3 1 1 5 3 1 1 1

Reduce the number of comparisons and time (the estimated time for computing $M_5(6)$ is 1.95 x 10¹² years).

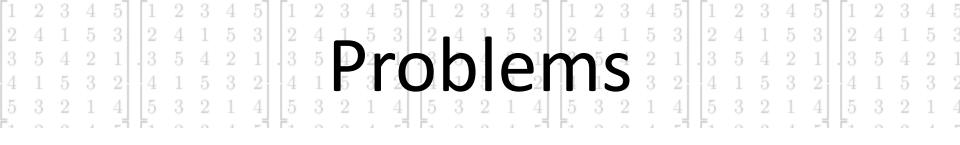
- Restrict focus to special sets of latin squares.
- Eliminate unnecessary comparisons.

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3

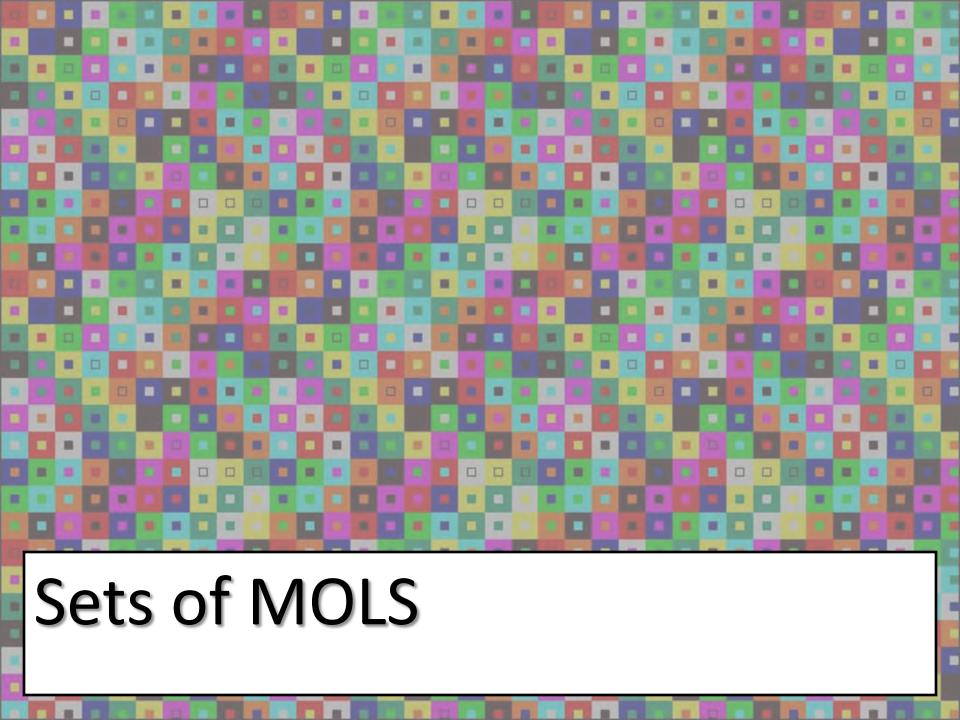
- The plan:
 - -Distribute the work:
 - Cores
 - Processors
 - Computers
 - Design a specialized circuit that compares latin squares.
 - -Optimize the algorithm for computing $M_t(6)$



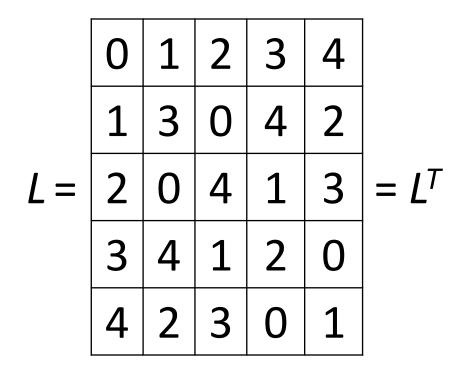
- What is the maximum
 - r_t -orthogonality, $M_n(t)$?
- Are there any properties related to *M_n(t)*?



- What is the maximum
 - r_t-orthogonality, M_n(t)?
- Are there any properties related to *M_n(t)*?
- Find constructions for sets of MOLS.



- Let *L* be a *LS* of order *n*, we say that *L* is symmetric if $L = L^{T}$.
- Example:

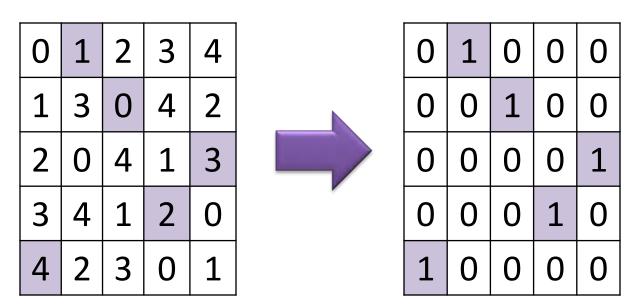


- A transversal in a latin square of order n is a set of n cells, each from a different row and a different column, such that every element in each cell is different.
- Example:

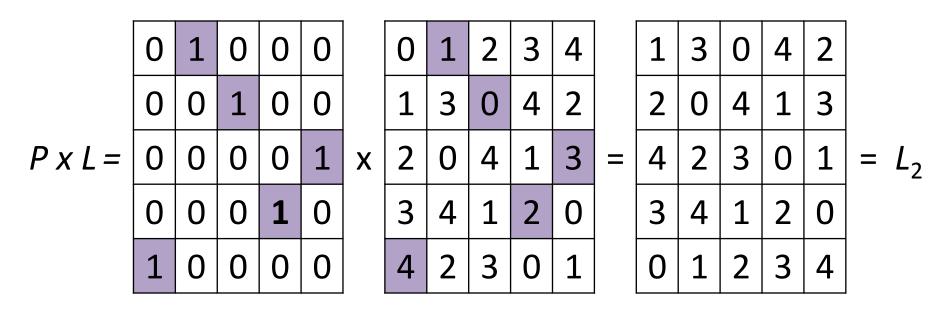
$$T = \{L_{1,2} = 1, L_{2,3} = 0, \\ L_{3,5} = 3, L_{4,4} = 2, L_{5,1} = 4\}$$

is a transversal in *L*.

- Setting the value of each cell in the transversal to 1 and the rest of the cells to 0, gives a *permutation matrix*.
- Example:



- Multiplying a permutation matrix by a latin square gives a latin square.
- Example:

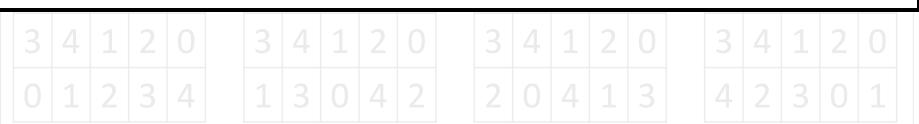


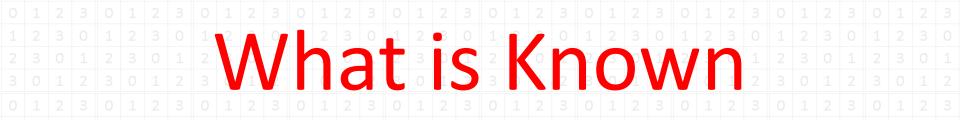
- Let L be a LS of order n = q, where q is a prime power, and let G be an n x n permutation matrix. We say that G is a MOLS generating matrix if {GL,G²L,...,Gⁿ⁻¹L=L} is a set of MOLS.
- Example.

1	3	0	4	2		2	0	4	1	3		4	2	3	0	1		0	1	2	3	4
2	0	4	1	З		4	2	3	0	1		0	1	2	3	4		1	З	0	4	2
4	2	3	0	1	,	0	1	2	3	4	,	1	3	0	4	2	,	2	0	4	1	3
3	4	1	2	0		3	4	1	2	0		3	4	1	2	0		3	4	1	2	0
0	1	2	3	4		1	3	0	4	2		2	0	4	1	3		4	2	3	0	1

Conjecture. Let *L* be a symmetric RLS contained in a set of MOLS. If G is a permutation matrix given by a transversal in L with exactly one 1 on its main diagonal, then G is a MOLS generating matrix.

Bermúdez.





- Number of distinct latin squares and distinct reduced latin squares when $n \leq 11$.
- For latin squares of order $n = p^r$, where p is a prime number and $r \ge 1$, N(n) = n 1.
- The maximum r_t —orthogonality when $t \in \{2, 3, 4\}$ and n = 6.

0 1 2 3 0 1 2

- The number of distinct latin squares and distinct reduced latin squares when $n \ge 12$.
- The maximum r_t —orthogonality when t = 5and n = 6.
- The maximum r_t —orthogonality when n is not a prime power and $2 < t \le n-1$.

- Optimize the computing approach for $M_t(6)$.
- Find properties of the latin squares that produce the $M_t(n)$.
- Find a formula for $M_t(n)$ when n is not a prime power and $t \le n-1$.
- Modify and prove the MOLS Generating Matrix Conjecture.
- Generalize the concept of the MOLS generating matrix to maximal sets of latin squares.

REFERENCES

- C.J. Colbourn and J.H. Dinitiz, Editors, <u>Handbook of Combinatorial Designs</u>, Sec. Ed., Chapman and Hall/CRC, Boca Raton, FL, 2007.
- F. Castro & C. Corrada & G. Mullen & I. Rubio. (2009). <u>Some Computational Problems</u> for Latin Squares.
- G. Mullen, & C. Mummert. (2007). <u>Finite Fields and Applications</u>, <u>Chapter 2</u>: <u>Combinatorics</u>. <u>Section 2</u>: <u>Latin Squares</u>. Pp. 43 – 59. P.cm – Student mathematical library; v.41, American Mathematical Society, Rhode Island, 2007.
- J. Bermúdez. (2009). <u>Study of Latin Square Generating Polynomials</u>.
- N. J. A. Sloane (1996-2008). <u>A002860</u>: Number of Latin squares of order n; or labeled Quasigroups. On-Line Encyclopedia of Integer Sequences. Retrieved on February 2, 2009 from <u>http://www.research.att.com/~njas/sequences/table?a=2860&fmt=4</u>
- N. J. A. Sloane (1996-2008). <u>A000315</u>: Number of reduced Latin squares of order n; labeled loops (Quasigroups with an identity element) and a fixed identity. *On-Line Encyclopedia of Integer Sequences.* Retrieved on April 4, 2009 from <u>http://www.research.att.com/~njas/sequences/table?a=315&fmt=4</u>
- R. Arce & J. Cordova & I. Rubio. (2008). <u>Consideraciones Computacionales de Latin</u> <u>Squares</u> (Power Point).
- <u>http://cs.anu.edu.au/~bdm/data/latin.html</u>

ACKNOWLEDGEMENTS

- This research was done in collaboration with the Latin Square Research Group consisting of:
 - Prof. Rafael Arce, Prof. Francis Castro, Prof. Javier Córdova, Richard García, Prof. Ivelisse Rubio, University of Puerto Rico – Río Piedras, and Prof. Gary Mullen, Penn State University.
- And, with the support of The Puerto Rico Louis Stokes Alliance for Minority Participation (PR-LSAMP) and the National Science Foundation Alan Turing STEM Fellowship.