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Abstract—In this paper we present an algorithmic approach Il. GENERALIZATION OF MCELIECE’'S THEOREM

to the problem of the divisibility of the number of solutions The following is the characteristic 2 version of the well
to a system of polynomial equations. Using this method we

prove that all binary cyclic codes with two zeros overF,; and Known theorem of McEliece [15] that we generalize to the
minimum distance 5 are quasi-perfect for f < 10. We also Multi-variable case:

present elementary proofs of divisibility results that, in some

cases, improve previous results. Theorem 1 (McEliece [15]). Let C be a binary cyclic code

and let! be the smallest number such th@t+ 1) nonzeros
of C (with repetitions allowed) have product equal to 1. Then
the weight of every codeword is divisible Pyand there is a
Even though the Ax-Katz, McEliece divisibility resultscodewordw € C such that2'*! does not divide the weight of
have been used widely in coding theory (for example s&e
[16],[20]) and cryptography (for example [3],[5]), most of the Let F(a1,a0,...,20) = Zg\i @z zs - gt be a
methods required advanced mathematical theory and were ;5‘8I'ynomial over a finite field f.lWe denote by’ anprimitive
algorithmic. This motivates us here to study elementary a%qh root of unity overQ azr)1d putd — 1 — ¢, so that
algorithmic approaches to this problem. pA = 07— A where A = Z[¢] is the ring of integers 0€)(¢).

In this paper we present new approaches to the problg@tS(F) e ¢Tr(FX) whereTr is trace function
X /f

of the divisibility of the number of solutions to a system of ». Py ) .
polynomial equations: from [F,; to F,. We say that’® divides S(F) if there exists

1) We use integer linear programming to estimate tHeS Z[c] .ch.h .t_hatS(F) = af'. The divisibi.lity of S(F) gives
divisibility in our generalization of McEliece’s theorem [14].US the divisibility of the number of solutions to a system of

In Section 11, we show that this method has the advantage% lynomial equations and hence the divisibility of the weights

being algorithmic and easy to program and, as a consequer? codeword_s. .

in Section IV we prove that all binary cyclic codes with two. %e associate t@” the following system of modular equa-

zeros ovellF,; and minimum distance 5 are quasi-perfect foyons:

f < 10. This new result is remarkable since it was previously enti +---+enty =0mod pf — 1

thought that a double error-correcting code being quasi-perfect

was a rare property. :
2) We give an elementary proof of the divisibility result enity + -+ +ennty =0mod p/ — 1,

by Morgno-Moreno. For the prime field case we also presephere0 < ¢; < p/ — 1. The system (1) determines the

a new improvement to results by Adolphson-Sperber [1] arfisibility of S(F); i.e., if

Ax-Katz [8], which solves a question raised by Ax in [2]. This

proof is completely algorithmic, hence giving an elementary w= min {op(t1) + -+ ap(tn)}, 2)

proof of the algorithmic treatment of the divisibility problem. (1,00t

is solution of(1)

I. INTRODUCTION

1)



thenp divides S(F'), whereo, is the p-weight function. In IV. QUASI-PERFECTCYCLIC CODES

[14] we neededp-adic analysis and the theorem of Stickel- |5 this section, we use the divisibility results and the
berger to justify thap/[S(F"); an innovation in this paper is ggorithmic methods to obtain that every binary primitive
that, in Section V, we present a completely elementary progt%nc code with two zeros ovef,; and minimum distance 5
of this result. is quasi-perfect forf < 10.

The relation of McEliece’s theorem and modular equations | gt Nj, 3,(d1,ds) be the number of solutions ov&,; of
can be found in [4] NOW, USing the above modular Systeme fo”owing System of po'ynomia' equations:
and the properties of the-weight function, the following p p p J
generalization of McEliece’s theorem [15] was proved in [14]. ryt +ayt +agt = Gy
This also improves results by Ax-Katz [2] and Adolphson- P 4 a2 4 gl = Byatz, (6)

Sperber [1]. Now consider the codé with zerosa® anda® overFyy,

Theorem 2. Let G be the set of polynomials spanned by theehere o is a primitive root of F,;. C being quasi-perfect

monomials ofF'. That is, depends on the covering radius and the minimum distance
of C. Double error-correcting codes with two zeros oy
G=A{arz"t a4 Fana Y ap | are known forf < 25 (for example, see [4]). The covering
radius ofC is 3 if and only if system (6) has a solution with
ar,..,an €Fpr z1xox324 # 0. The existence of this type of solutions to the

With » as in (2), there is at least one polynomi@le G such system and hen(_:e quasi-perfection is given by the following
that S(G) is divisible byg* but not by##+1, theorem proved in [11].

Theorem 3. Let o be a primitive root ofFy; and let C
lIl. DIVISIBILITY PROPERTIESREDUCED TO APROBLEM  pa the code with zeroa™ , a® over F,y, and minimum

IN INTEGERLINEAR PROGRAMMING distance 5. Thed is a quasi-perfect code whenever 4 divides
In this section we estimate the divisibility of the exponentiaNs, 5. (d1, d2)-
sum S(F") by associating it to a system of inequalities that geyera) infinite families of quasi-perfect codes with two
form a problgm of integer Ilne_ar programming. Solvmg sucharos are known (7], [5], [10]). Theorem 3 gives a way to
a problem might be hard but, in many cases, we obtain goggd; qyasi-perfect codes, but, to apply it, we would need to
estimates using elementary methods. _ ive a theoretical proof that 4 divideSs, s,(d;,ds) for all
The_ system (1) is equivalent to the following system 31, 82) # (0,0) and this can be very difficult. However, if
equations: we follow the techniques of Section Ill, we can determine
divisibility with a computer program. For this, as in [14],
enti ety =a(p! 1) considerythe following rrJnodulgr System associated to (6[): ]

' (3) dit; + dota = 0 mod 2f -1
671,1t1 + -+ 6nNtN = Cn(pf - 1)a . (7)
\t,r\gzer?/\?eigh? finf:)t];o; : a\r/]vdecéb?aior; eing the properties of ity + dty = 0mod 2/ —1
P 9 Tpr t1+t3+t5+t750mod2f—l
op(e11)op(t1) + -+ + oplein)op(tn) = Jp(cl(pf —-1)) ta +t4 +t6 +ts = 0 mod 27 — 1.
z(p-1f Now, we need to prove that > 2f + 1, wherey is as
(4) defined in (2). Note that the computationofs not a difficult
; Py > rq one. In the cases we computed, we only need to compute the
op(en1)op(ty) + -+ oplenn)o(tn) 2 open(p’ —1)) minimum ., of just one modular equation,i.e.,
= (@-1f

pp = min{oy(u) + 2(v) | dyu + dov = 0mod 24 — 1},

Now, our problem of finding the divisibility of
S(F) reduces to the integer linear programmin
problem of finding p = minegy, {72 + - +
Tn |, (Th,...,Ty) is a solution of system belgw:

and this is simple. This is true singe> 4u, — 2f.
9 Using the above procedure, we verified tpat- 2f + 1 for
f <10 and obtained the following result:

Theorem 4. LetC be a binary primitive cyclic code with two
op(en)Ty + - +oplewn)In = (p—1)f zeros ovefF,; and minimum distance 5. If < 10, thenC is
®) a quasi-perfect code.

op(ent)Ty + -+ 0p(enn)Tn > (p — 1) f. Formerly, finding primitive quasi-perfect codes with
B minimum distance 5 and two zeros was considered difficult,
Note thaty < u, therefored” divides S(F') if 6* does. but, as we mentioned, there are infinite families of such



codes. Now Theorem 4 suggests that it is difficult to findith ¢; € E,”.

codes with minimum distance 5 that are not quasi-perfect. ConsiderS = {0,1} if p = 2, and, forp > 3 and
g a generator of the group of units &,», S = {0} U

Problem: Prove that all the binary primitive cyclic codes With{g"l’”_1 | 0 <i < p—2}. This implies thatS is a complete

two zeros and minimum distance 5 are quasi-perfect or fingsidue system modulp.

the smallest binary primitive cyclic code with two zeros and We put

minimum distance 5 that it is not quasi-perfect. S(F)= Y ¢"®ea (10)

c(F)™
V. ELEMENTARY APPROACH TO THEDIVISIBILITY OF THE x€ ()

NUMBER OF SOLUTIONS TO SYSTEMS OFEQUATIONS By abuse of notation we will also writé for the pOlynomial
with integral coefficients obtained by lifting, to S. Since

There are several results on the divisibility of the number,, !
. L depends only omn modulo p, the preceding can also be
of solutions to systems of equations; some examples Aleten as

the results by Ax-Katz ([2], [8]), Moreno-Moreno [12] and S(F) = Z CF®). (11)
Adolphson-Sperber [1]. These results have been widely used
. . . . SES”
in applications to coding theory (for example see [16],[10]) ) )
and cryptography (for example [3],[5] ). However, the methods NOW: if we write
used to obtain these and other related results required advanced N oo
mathematics techniques such as p-adic analysis, the theorem S(F)y =Y [[a-o=", (12)
of Stickelberger and Newton Polyhedra. s€Smi=1
On [9] we presented an elementary proof of the Moren@nd use the binomial theorem to expand
Moreno result for characteristic 2 that uses the covering ;s
method introduced in [13]. In the present paper we estimate 1—0)=" =>" ( , )(—9)1'7 (13)
the divisibility of exponential sums, for arbitrary characteristic, v20

using a generalization of the covering method. This newe can obtain
eneralization allows us to give a completely elementary proqf . , . . . .
gf Moreno-Morenao’s resul'fJ [12] for gny c%aracteristirg IZlmljg roposition 5. With these notations, B(F) is a rational
improvements to Ax-Katz and Adolphson-Sperber’s resulfd
over the prime field. With the above proposition we obtain the following new
We have two different elementary proofs for this result [6}esult, which gives an improvement of the main theorem of
the one that we sketch here is algorithmic for the prime fieldolphson-Sperber [1] for the finite fieltf,. The result of
F,, providing then a completely elementary treatment of thedolphson-Sperber is an improvement to Ax-Katz's theorem

teger, then it is divisible by!#»—1(F)/(=1T,

algorithmic solution to the divisibility problem. (121, [8]).
To generalize the covering method, [Bt= {e;,...,en} .
be a set ofn-tuples,e; = (ei1,...,em), Where eacte;; is Theorem 6. With the above notationss,—.(F) = w(F),

a non-negative integer. Léf = (v;)1<i<ny be anN-tuple of wherew(F") is as defined in 1]

non-negative integers. th is a positive integer, we say th&t Also note thats,_;(E) coincides withu of (2) when the

is anm-covering when the vector sufn=1v1e; +---+vyey finite field isF,, and we then obtain an elementary proof of

has all its entries nonzero and divisible by or equivalently, the algorithmic treatment in Section lII.

when there exist positive integels, ..., A\, such that Combining the generalization of the covering method with a
generalization of the reduction to the prime field method [12]

®) we can obtain an elementary proof of the following result by
Moreno-Moreno for an arbitrary finite field.

viein + -+ Unent = mAy

Viein + -+ UNENn = MAp.
Theorem 7. Let F; be a polynomial oveff,; with p-weight

We definex.,,(E), the m-th covering number ofz, as the degreel;, wherei = 1,...,t. Then the number simultaneous

smallest cardinality of any such-covering, that is the min- o\ iong of 7y .. F, over F,, is divisible by p*, where

imal value ofry + --- + vy for which the preceding system F(n — Zt L) P

holds. One clearly has,,(E) < mn. p=[———==L",

Let now ¢ be a primitivep-th root of unity overQ and put max; l;

6 = 1—(, so thatpA = 67~ A, whereA is the ring of integers ACKNOWLEDGMENTS

of Q(¢). Also let F € F,[x1,...,z,] be a polynomial inn The authors want to thank Carlos Corrada, UPR-RP, for the

variables with coefficients in the finite fielg} with p elements, calculation of the covering radius of the codes on Section IV

and such tha¥ is the set of exponent-tuples of monomials that led to Theorem 4. They also appreciate the comments

that appear inF" with non-zero coefficient, that is made by the referees and the remark that all primitive double
N error-correcting cyclic codes with two zeros oves; are

F(x) = Zcixei, Q) known for f < 25. The work of Ivelisse Rubio was supported

pa— by Program URMAA, NSA Grant H98230-04-C-0486.



(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]
(9]

[20]

[11]

[12]

(23]

[14]

[15]

[16]

REFERENCES

A. Adolphson and S. Sperberp-adic estimates for exponential sums
and the theorem of Chevalley-Warningtnn. Scient. E. N. Superidith.
series20 (1987), 545-556.

J. Ax, “Zeros of polynomials over finite fields’Amer. J. math.86
(1964),255-261.

A. Canteaut, P. Charpin, H. Dobbertin, “Binam-Sequences with
Three-Valued Crosscorrelation: A Proof of Welch's ConjectutEEE
Trans. Inform. Theory46, pp. 4-8, 2000.

A. Canteaut, P. Charpin, H. Dobbertin, Weight “Divisibility of Cyclic
Codes, Highly Nonlinear Functions ofy=, and Crosscorrelation of
Maximum Length SequencesSIAM J. DISCRETE MATHVol. 13,
No. 1, pp. 105-138, 2000.

H. Dobbertin, T. Helleseth, P.V. Kumar and H. Martinsen, “Ternery
Sequences with Three-Valued Cross-Correlation Function: New Deci-
mations of Welch and Niho TypdEEE Trans. Inform. Theory7, pp.
1473-1481, 2001.

H. Randriam, F. N. Castro, O. Moreno, |. Rubio and H. F. Mattson,
Jr., “Generalization of the Covering Method for Arbitrary Characteristic
and the Divisibility Properties of Exponential Sums”, draft.

T. Kasami, “Weight Distribution of Bose-Chaudhuri-Hocquenghen
Codes”, Combinatorial Math. and its Application&Jniv. of North
Carolina Press, Chapel Hill, NC 1969.

N.M. Katz, “On a Theorem of Ax"Amer. J. Math93 (1971), 485-499.

O. Moreno, F. N. Castro, and H. F. Mattson, jr., Correction to “Divisi-
bility properties for covering radius of certain cyclic codes”. To appear,
IEEE Trans. Inform. Theory

O. Moreno and F. N. Castro, “Divisibility Properties for Covering Radius
of Certain Cyclic Codes”)]EEE Trans. Inform. Theory 49:12(2003),

pp. 3299-3303.

O. Moreno and F. N. Castro, “On the Covering Radius of Certain Cyclic
Codes"Applied Algebra, Algebraic Algorithms and Error-Correcting
Codes pp.129-138, Springer.

O. Moreno and C.J. Moreno, “Improvement of the Chevalley-Warning
and the Ax-Katz theoremsAmer. J. Math117:1 (1995), pp. 241-244.
O. Moreno and C. J. Moreno, “The MacWilliams-Sloane Conjecture
on the Tightness of the Carlitz-Uchiyama Bound and the Weights of
Duals of BCH Codes”|EEE Trans. Inform. Theory0:6 (1994), pp.
1894-1907.

O. Moreno, K. Shum, F. N. Castro & P.V. Kumar, “Tight Bounds for
Chevalley-Warning-Ax Type Estimates, with Improved Applications”,
Proc. London Math. So@8, pp. 545-564, 2004.

R. McEliece, “Weight congruences fagr-ary cyclic codes”,Discrete
Math, 3(1972), pp. 177-192.

H. N. Ward, “Weight Polarization and Divisibility"Discrete Math, 83,

pp. 315-226, 1990.



