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INTRODUCTION

• Why study latin squares?

–Applications

–Puzzles

–It’s fun!



LATIN SQUARES
• A latin square of order n is an n x n matrix containing 

n distinct symbols such that each symbol appears in 
each row and column exactly once. The symbols are 
usually denoted by 0, 1,…, n–1.

• Example. Latin square of order 4:

Theorem 1. There is a latin square of order n for each 
n ≥ 1.

This is Theorem 2.2.3. G. Mullen & C. Mummert, 44.

0 1 2 3

1 2 3 0

2 3 0 1

3 0 1 2



Find the latin square:
0 3 3 1 1 0 2 2 3 1 3 2

1 2 3 2 0 2 0 3 0 3 2 0

2 2 1 3 1 2 3 0 1 2 0 3

2 0 0 1 3 1 1 1 2 3 2 1

2 1 2 3 3 2 2 0 0 1 3 2

0 0 3 0 2 1 0 3 1 0 3 2

3 1 2 2 2 0 3 1 3 2 1 1

1 3 0 1 0 3 1 3 3 0 2 2

1 0 2 2 0 1 3 0 2 3 0 1

2 2 3 0 1 3 1 3 0 1 2 3

3 1 2 3 3 1 0 2 1 2 3 0

0 3 0 1 0 3 2 1 3 0 1 2



0 3 3 1 1 0 2 2 3 1 3 2

1 2 3 2 0 2 0 3 0 3 2 0

2 2 1 3 1 2 3 0 1 2 0 3

2 0 0 1 3 1 1 1 2 3 2 1

2 1 2 3 3 2 2 0 0 1 3 2

0 0 3 0 2 1 0 3 1 0 3 2

3 1 2 2 2 0 3 1 3 2 1 1

1 3 0 1 0 3 1 3 3 0 2 2

1 0 2 2 0 1 3 0 2 3 0 1

2 2 3 0 1 3 1 3 0 1 2 3

3 1 2 3 3 1 0 2 1 2 3 0

0 3 0 1 0 3 2 1 3 0 1 2



A central problem in the theory of 
latin squares is to determine how 
many latin squares of each size 
exist.

Computational Problem



n #LS

1 1

2 2

3 12

4 576

5 161,280

6 812,851,200

7 61,479,419,904,000

8 108,776,032,459,082,956,800

9 5,524,751,496,156,892,842,531,225,600

10 9,982,437,658,213,039,871,725,064,756,920,320,000

11 776,966,836,171,770,144,107,444,346,734,230,682,311,065,600,000

Taken from  N. J. A. Sloane, A002860, On-Line Encyclopedia of Integer Sequences (1996-2008) 
http://www.research.att.com/~njas/sequences/A002860

http://www.research.att.com/~njas/sequences/A002860
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n ≥ 12 ?

http://www.research.att.com/~njas/sequences/A002860


TYPES OF LATIN SQUARES

• A latin square of order n is said to be reduced if 
its first row and first column are in the standard 
order 0, 1,…, n–1. 

• Example. This is an example of a reduced latin 
square of order 4:

0 1 2 3

1 2 3 0

2 3 0 1

3 0 1 2



Taken from  N. J. A. Sloane, A000315, On-Line Encyclopedia of Integer Sequences (1996-2008) 
http://www.research.att.com/~njas/sequences/A000315.

n #RLS

1 1

2 1

3 1

4 4

5 56

6 9,408

7 16,942,080

8 5.35 x 1011

9 3.78 x 1017

10 7.58 x 1024

11 5.36 x 1033

http://www.research.att.com/~njas/sequences/A000315
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TYPES OF LATIN SQUARES

• Let Ln denote the number of distinct latin 
squares of order n and let ln denote the 
number of distinct reduced latin squares of 
order n:

Theorem 2. For any n ≥ 2, Ln= n! (n – 1)! ln
Example:

For n = 5, l5 = 56 and you will get 

L5 = (5!)(4!)(56)= 161,280

This is Theorem 2.2.6. G. Mullen & C. Mummert, 45.



TYPES OF LATIN SQUARES

• A latin square of order n is said to be semi-
reduced if its first row is in the standard order. 

• Example. This is an example of a semi-reduced 
latin square of order 5:

0 1 2 3 4

2 4 1 0 3

3 2 0 4 1

4 0 3 1 2

1 3 4 2 0



PERMUTATIONS OF LATIN SQUARES

• Permutations of latin squares:

1. column permutation

2. row permutation

3. relabeling

– A permutation of a set is an arrangement of its 
elements in a certain order. 

– The number of permutations of n elements is: 
n!=n(n-1)(n-2)(n-3)…(3)(2)(1).



PERMUTATIONS OF LATIN SQUARES
Column permutation

Row permutation

0 1 2 3 0 1 3 2

1 2 3 0 1 2 0 3

2 3 0 1 2 3 1 0

3 0 1 2 3 0 2 1

0 1 3 2 0 1 3 2

1 2 0 3 2 3 1 0

2 3 1 0 1 2 0 3

3 0 2 1 3 0 2 1



PERMUTATIONS OF LATIN SQUARES

Relabeling:

2    0

0    1

1    2

3    3

2 0 1 3 0 1 2 3

3 1 2 0 3 2 0 1

0 2 3 1 1 0 3 2

1 3 0 2 2 3 1 0



PERMUTATIONS OF LATIN SQUARES

Relabeling:

0   

1   

α   

α2 

0 1 α2 α

α α2 1 0

1 α 0 α2

α2 0 α 1



Example. All the latin squares of order 3:

1 
Interchange 

the n 
columns 

0 1 2 

1 2 0 

2 0 1 

 

    Interchange the last n-1 rows 

 7 
 

8 
 

9 
 

10 
 

11 
 

12 

 0 1 2 
 

0 2 1 
 

1 0 2 
 

1 2 0 
 

2 0 1 
 

2 1 0 

 2 0 1 
 

2 1 0 
 

0 2 1 
 

0 1 2 
 

1 2 0 
 

0 2 1 

 1 2 0 
 

1 0 2 
 

2 1 0 
 

2 0 1 
 

0 1 2 
 

1 0 2 

 

2 
 

3 
 

4 
 

5 
 

6 

0 2 1 
 

1 2 0 
 

1 0 2 
 

2 0 1 
 

2 1 0 

1 0 2 
 

2 0 1 
 

2 1 0 
 

0 1 2 
 

0 2 1 

2 1 0 
 

0 1 2 
 

0 2 1 
 

1 2 0 
 

1 0 2 

You get the twelve latin squares of order 3

PERMUTATIONS OF LATIN SQUARES

Theorem 2. For any n ≥ 2, Ln= n! (n – 1)! ln



SETS OF ORTHOGONAL LATIN 
SQUARES



SUPERIMPOSING LATIN SQUARES

• Given two latin squares of the same size we can 
superimpose them, that is, we can place or lay 
one latin square over the other to create a 
square of ordered pairs.

• Example.

(0,0) (1,1) (2,2)

(1,2) (2,0) (0,1)

(2,1) (0,2) (1,0)

S(LS1,LS2)

0 1 2 0 1 2

1 2 0 2 0 1

2 0 1 1 2 0

LS1 LS2



r–orthogonality

• r = P(LS1,LS2) is the number of distinct 
ordered pairs you get when you 
superimpose LS1 and LS2.

• LS1 and LS2 are said to be r–orthogonal
if you get r distinct ordered pairs when 
you superimpose them. 



r–orthogonality

• Example. A pair of 8-orthogonal latin 
squares of order 4:

0 1 2 3 0 1 2 3

1 2 3 0 3 0 1 2

2 3 0 1 2 3 0 1

3 0 1 2 1 2 3 0

LS1 LS2
(0,0) (1,1) (2,2) (3,3)

(1,3) (2,0) (3,1) (0,2)

(2,2) (3,3) (0,0) (1,1)

(3,1) (0,2) (1,3) (2,0)

S(LS1,LS2)



r–orthogonality

• Example. A pair of 8-orthogonal latin 
squares of order 4:

0 1 2 3 0 1 2 3

1 2 3 0 3 0 1 2

2 3 0 1 2 3 0 1

3 0 1 2 1 2 3 0

LS1 LS2
(0,0) (1,1) (2,2) (3,3)

(1,3) (2,0) (3,1) (0,2)

(2,2) (3,3) (0,0) (1,1)

(3,1) (0,2) (1,3) (2,0)

S(LS1,LS2)Note that P(LS1,LS2) = P(LS2,LS1).



Orthogonal Latin Squares

• Two latin squares of order n are orthogonal
if r = n2.

• Pair of orthogonal latin squares of order 3:

(0,0) (1,1) (2,2)

(1,2) (2,0) (0,1)

(2,1) (0,2) (1,0)

S(LS1,LS2)

0 1 2 0 1 2

1 2 0 2 0 1

2 0 1 1 2 0

LS1 LS2



r–orthogonality

• The spectrum (for r–orthogonality) is 
the set of all the possible values of r.

• The frequency (for r–orthogonality) is 
the number of pairs of latin squares of 
order n that are r–orthogonal.



• Example: 
For latin squares of order 4 the 
spectrum is {4, 6, 8, 9, 12, 16} 
and the frequency for those 
values of r is

• Example:
For latin squares of order 6 the 
spectrum is {6, 8, 9, 10, 11, 12, 
13, 14, 15, 16, 17, 18, 19, 20, 21, 
22, 23, 24, 25, 26, 27, 28, 29, 30, 
31, 32, 34}

r–orthogonality

r f

4 4

5 0

6 12

7 0

8 6

9 24

10 0

11 0

12 48

13 0

14 0

15 0

16 2



• Theorem 3: For a positive integer n, a 
pair of r–orthogonal latin squares of 
order n, exists if and only if r{n, n2} or
n + 2 ≤ r ≤ n2 + 2, except when
–n = 2 and r = 4;

–n = 3 and r{5, 6, 7};

–n = 4 and r{7, 10, 11, 13, 14};

–n = 5 and r{8, 9, 20, 22, 23};

–n = 6 and r{33, 36}.

r–orthogonality

This is Theorem 3.104. C.J. Colbourn and J.H. Dinitz. 



• Example: 

For latin squares of order 4

r–orthogonality

r 4 5 6 7 8 9 10 11 12 13 14 15 16
f * 0 * 0 * * 0 0 * 0 0 0 * 



• Proposition: There exist a pair of latin 
squares of order n that are r–orthogonal if 
and only if there exist a reduced latin 
square of order n and a semi-reduced latin 
square of order n that are r-orthogonal.

– Example: The number of pairs of latin squares 
of order 5 is L5 × L5 = 26,011,238,400. The 
number of pairs of reduced latin squares and 
semi-reduced latin squares is l5 × sl5 = 75,264.

r–orthogonality

Note: sln is the number of distinct semi-reduced latin squares of order n



• Let {LS1,…, LSt} be a set of t ≥ 2 latin squares. 
Then, rt is the sum of all the r = P(LSi, LSj), 
with 1 ≤ i, j ≤ t and i≠j. 

• Example. Let {LS1, LS2 , LS3} be a set of three 
latin squares of order n:

r3 = P(LS1, LS2) + P(LS1, LS3) + P(LS2, LS3)

rt–orthogonality



rt–orthogonality

• Example: Here we have a set of three latin 
squares of order 4 with r3 = 9 + 12 + 9 = 30

0 1 2 3 0 1 2 3 0 1 2 3

1 3 0 2 1 2 3 0 2 3 0 1

2 0 3 1 2 3 0 1 1 2 3 0

3 2 1 0 3 0 1 2 3 0 1 2

LS1 LS2 LS3

P(LS1, LS3)=9

P(LS2, LS3)=12P(LS1, LS2)=9



• The spectrum (for rt-orthogonality) is 
the set of all the possible values of rt.

• The frequency (for rt-orthogonality) is 
the number of sets of t latin squares of 
order n that have an rt –orthogonality, 
and it is denoted by       .

rt–orthogonality

tr
h



Mutually Orthogonal Latin Squares

• A collection {LS1, LS2, LS3,…, LSt} of t ≥ 2 latin 
squares of order n is said to be mutually 
orthogonal if every pair of distinct latin 
squares in the collection is orthogonal.

• Example. Let {LS1, LS2, LS3} be a set of 3 latin 
squares of order n.

This set is orthogonal if P(LS1, LS2)=n2,              
P(LS2, LS3)=n2 and P(LS1,LS3)=n2.



• Example: Here we have a set of orthogonal latin 
squares of order 4:

Mutually Orthogonal Latin Squares

0 1 2 3 0 2 3 1 0 3 1 2

1 0 3 2 1 3 2 0 1 2 0 3

2 3 0 1 2 0 1 3 2 1 3 0

3 2 1 0 3 1 0 2 3 0 2 1

LS1 LS2 LS3

P(LS1, LS3)=16

P(LS2, LS3)=16P(LS1, LS2)=16



Questions:

Is there a collection of mutually 
orthogonal latin squares for every 
order? 

If they exist, how big is the largest 
collection of mutually orthogonal latin 
squares for each order?

Mutually Orthogonal Latin Squares



• Let N(n) denote the size of the largest collection of 
mutually orthogonal latin squares (MOLS) of order n
(that exist). 

Theorem 4. N(n) ≤ n–1 for any n ≥ 2.

Theorem 5. If q is a prime power, then N(q) = q – 1.

- q = pr where p is prime number and r ∈ Ν

Theorem 6. N(n) ≥ 2 for all n except 2 and 6.

- N(2) = 1 and N(6) = 1

Theorem 7. Let n = q1,…,qr, where qi are distinct prime 
powers and q1<…<qr. Then N(n) ≥ q1 – 1.

Mutually Orthogonal Latin Squares

Theorem 4 is Theorem 2.2.8. G. Mullen & C. Mummert, 46.
Theorem 5 is Theorem 2.2.10. G. Mullen & C. Mummert, 47.

Theorem 6 is Theorem 2.2.19. G. Mullen & C. Mummert, 50.
Theorem 7 is Theorem 2.2.24. G. Mullen & C. Mummert, 52.



Question:

Are there mutually orthogonal latin 
squares of order n if n is not a prime 
power?

Mutually Orthogonal Latin Squares



OUR PROJECTS



• What is the maximum 

rt–orthogonality, Mn(t)? 

• Are there any properties related to 
Mn(t)? 

• What is the frequency and the spec-
trum (for rt–orthogonality) for sets of 
three or more latin squares of order n?

Research Questions



• We have tables with the spectrum for n = 4 and 5 with 

2 ≤ t ≤ n–1 and for n = 6 with t = 2.

• We have tables with the frequency for h2(4), h3(4), h2(5), 

h3(5) and h4(5).

RESULTS
t Mt(6)

2 34

3 96

4 188

5 300≤ M5(6) < 340
Taken from R. Arce & J. Cordova & I. Rubio. (2009) 



Computational Problem

Reduce number of comparisons 
and time

Restrict focus to special sets of 
latin squares

Eliminate unnecessary 
comparisons



Computational Problem

• The plan: 

–Distribute the work: 

• Cores

• Processors 

• Computers

–Design a specialized circuit that 
compares latin squares.



• Number of distinct latin squares when n ≤ 11.

• Number of distinct reduced latin squares when n ≤ 11.

• The spectrum for r2–orthogonality and for n = 4 and 5 with 

2 ≤ t ≤ n–1.

• The frequency for hr2(4), hr3(4), hr2(5), hr3(5), hr4(5) and 

hr2(6).

• If n is a prime power and t ≤ n–1, then

• The number of latin squares of order n = pr, where p is a 

prime number and r ∈ Ν, that are mutually orthogonal.

What is Known











2
)(M 2
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•The number of distinct latin squares when n ≥ 12.
•The number of distinct reduced latin squares when   

n ≥ 12. 
•The spectrum for rt–orthogonality with t > 2 and        

n ≥ 6.
•The frequency for the rt–orthogonality when t > 2 

and n ≥ 6.
•The maximum rt–orthogonality when t = 5 and n = 6 
•The maximum rt–orthogonality when n is not a prime 

power and 2 < t ≤ n–1.
•Mutually orthogonal latin squares of order n when n

is not a prime power.

What is Unknown



• Optimize the computing approach to apply it to the 

case n = 6 because the time of computing the M3(6) 

is 205.52541 years.

• Find properties of the latin squares that produce the 

Mt(n).

• Find a formula for Mt(n) when n is not a prime 

power and t ≤ n–1.

• Estimate the probability that two random latin 

squares of order n are going to be mutually 

orthogonal.    

FUTURE WORK
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