

SOME PROPERTIES OF LATIN SQUARES

Jeranfer Bermúdez, Richard García, Reynaldo López and Lourdes Morales

University of Puerto Rico in Río Piedras
Department of Computer Science

Mentor: Prof. Ivelisse Rubio

OUTLINE

- Introduction
- Latin Squares
- Types of Latin Squares
- Permutations of Latin Squares
- Sets of Orthogonal Latin Squares
-r-orthogonality
$-r_{t}$-orthogonality
- Our Projects
- References
- Acknowledgements

INTRODUCTION

-Why study latin squares?
-Applications
-Puzzles
-It's fun!

LATIN SQUARES

- A latin square of order n is an $n \times n$ matrix containing n distinct symbols such that each symbol appears in each row and column exactly once. The symbols are usually denoted by $0,1, \ldots, n-1$.
- Example. Latin square of order 4:

0	1	2	3
1	2	3	0
2	3	0	1
3	0	1	2

\square Theorem 1. There is a latin square of order n for each $n \geq 1$.

Find the latin square:

0	3	3	1
1	2	3	2
2	2	1	3
2	0	0	1

1	0	2	2
0	2	0	3
1	2	3	0
3	1	1	1

3	1	3	2
0	3	2	0
1	2	0	3
2	3	2	1

2	1	2	3
0	0	3	0
3	1	2	2
1	3	0	1

3	2	2	0
2	1	0	3
2	0	3	1
0	3	1	3

0	1	3	2
1	0	3	2
3	2	1	1
3	0	2	2

1	0	2	2
2	2	3	0
3	1	2	3
0	3	0	1

0	1	3	0
1	3	1	3
3	1	0	2
0	3	2	1

2	3	0	1
0	1	2	3
1	2	3	0
3	0	1	2

0	3	3	1
1	2	3	2
2	2	1	3
2	0	0	1

1	0	2	2
0	2	0	3
1	2	3	0
3	1	1	1

3	1	3	2
0	3	2	0
1	2	0	3
2	3	2	1

2	1	2	3
0	0	3	0
3	1	2	2
1	3	0	1

3	2	2	0
2	1	0	3
2	0	3	1
0	3	1	3

0	1	3	2
1	0	3	2
3	2	1	1
3	0	2	2

1	0	2	2
2	2	3	0
3	1	2	3
0	3	0	1

0	1	3	0
1	3	1	3
3	1	0	2
0	3	2	1

2	3	0	1
0	1	2	3
1	2	3	0
3	0	1	2

Computational Problem

A central problem in the theory of latin squares is to determine how many latin squares of each size exist.

\boldsymbol{n}	\#LS
1	1
2	2
3	12
4	576
5	161,280
6	$812,851,200$
7	$61,479,419,904,000$
8	$108,776,032,459,082,956,800$
9	$5,524,751,496,156,892,842,531,225,600$
10	$9,982,437,658,213,039,871,725,064,756,920,320,000$
11	$776,966,836,171,770,144,107,444,346,734,230,682,311,065,600,000$

Taken from N. J. A. Sloane, A002860, On-Line Encyclopedia of Integer Sequences (1996-2008) http://www.research.att.com/~njas/sequences/A002860

n	\#LS
1	1
2	2
3	12
4	576
5	
6	
7	
8	100,110,05<,4J9,002,950,000
9	5,524,751,496,156,892,842,531,225,600
10	9,982,437,658,213,039,871,725,064,756,920,320,000
11	776,966,836,171,770,144,107,444,346,734,230,682,311,065,600,000

Taken from N. J. A. Sloane, A002860, On-Line Encyclopedia of Integer Sequences (1996-2008) http://www.research.att.com/~njas/sequences/A002860

TYPES OF LATIN SQUARES

- A latin square of order n is said to be reduced if its first row and first column are in the standard order $0,1, \ldots, n-1$.
- Example. This is an example of a reduced latin square of order 4:

0	1	2	3
1	2	3	0
2	3	0	1
3	0	1	2

\boldsymbol{n}	\#RLS
1	1
2	1
3	1
4	4
5	56
6	9,408
7	$16,942,080$
8	5.35×10^{11}
9	3.78×10^{17}
10	7.58×10^{24}
11	5.36×10^{33}

Taken from N. J. A. Sloane, A000315, On-Line Encyclopedia of Integer Sequences (1996-2008) http://www.research.att.com/~njas/sequences/A000315.

n	\#RLS
1	1
2	1
3	1
4	4
\triangleq	53
9	3.78×10^{17}
10	7.58×10^{24}
11	5.36×10^{33}

Taken from N. J. A. Sloane, A000315, On-Line Encyclopedia of Integer Sequences (1996-2008) http://www.research.att.com/~njas/sequences/A000315.

TYPES OF LATIN SQUARES

- Let L_{n} denote the number of distinct latin squares of order n and let I_{n} denote the number of distinct reduced latin squares of order n :

Theorem 2. For any $n \geq 2, L_{n}=n!(n-1)!I_{n}$
Example:
For $n=5, l_{5}=56$ and you will get $L_{5}=(5!)(4!)(56)=161,280$

TYPES OF LATIN SQUARES

- A latin square of order n is said to be semireduced if its first row is in the standard order.
- Example. This is an example of a semi-reduced latin square of order 5:

0	1	2	3	4
2	4	1	0	3
3	2	0	4	1
4	0	3	1	2
1	3	4	2	0

PERMUTATIONS OF LATIN SQUARES

- Permutations of latin squares:

1. column permutation
2. row permutation
3. relabeling

- A permutation of a set is an arrangement of its elements in a certain order.
-The number of permutations of n elements is: $n!=n(n-1)(n-2)(n-3) \ldots(3)(2)(1)$.

PERMUTATIONS OF LATIN SQUARES

\square Column permutation

0	1	2	3
1	2	3	0
2	3	0	1
3	0	1	2

DRow permutation

0	1	3	2
1	2	0	3
2	3	1	0
3	0	2	1

$\checkmark \quad$| 0 | 1 | 3 | 2 |
| :---: | :---: | :---: | :---: |
| 2 | 3 | 1 | 0 |
| 1 | 2 | 0 | 3 |
| 3 | 0 | 2 | 1 |

PERMUTATIONS OF LATIN SQUARES

\square Relabeling:

$$
\begin{aligned}
& 2 \rightarrow 0 \\
& 0 \rightarrow 1 \\
& 1 \rightarrow 2 \\
& 3 \rightarrow 3
\end{aligned}
$$

2	0	1	3
3	1	2	0
0	2	3	1
1	3	0	2

PERMUTATIONS OF LATIN SQUARES

\square Relabeling:

PERMUTATIONS OF LATIN SQUARES

 Example. All the latin squares of order 3:Theorem 2. For any $n \geq 2, L_{n}=n!(n-1)!I_{n}$

1			Interchange the n columns	2			3			4			5			6		
0	1	2		0	2	1	1	2	0	1	0	2	2	0	1	2	1	0
1	2	0		1	0	2	2	0	1	2	1	0	0	1	2	0	2	1
2	0	1		2	1	0	0	1	2	0	2	1	1	2	0	1	0	2

Interchange the last $n-1$ rows

7		
0	1	2
2	0	1
1	2	0

8		
0	2	1
2	1	0
1	0	2

9		
1	0	2
0	2	1
2	1	0

10		
1	2	0
0	1	2
2	0	1

11		
2	0	1
1	2	0
0	1	2

12		
2	1	0
0	2	1
1	0	2

You get the twelve latin squares of order 3

0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	
1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0
2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1
0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0
2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1
0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0
2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1
0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0
2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1
0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0
2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1
0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0
2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1
0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0
2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	
	SETS OF ORTHOGONAL LATIN SQUARES																															

SUPERIMPOSING LATIN SQUARES

- Given two latin squares of the same size we can superimpose them, that is, we can place or lay one latin square over the other to create a square of ordered pairs.
- Example.

0	1	2				
1	2	0				
2	0	1				
$L S_{1}$,$~$	0	1	2
:---	:---	:---				
2	0	1				
1	2	0				
$L S_{2}$						

$(0,0)$	$(1,1)$	$(2,2)$
$(1,2)$	$(2,0)$	$(0,1)$
$(2,1)$	$(0,2)$	$(1,0)$
$S\left(L S_{1}, L S_{2}\right)$		

r-orthogonality

- $r=P\left(\mathrm{LS}_{1}, \mathrm{LS}_{2}\right)$ is the number of distinct ordered pairs you get when you superimpose LS_{1} and LS_{2}.
- LS_{1} and LS_{2} are said to be r-orthogonal if you get r distinct ordered pairs when you superimpose them.

r-orthogonality

- Example. A pair of 8-orthogonal latin squares of order 4:

r-orthogonality

- Example. A pair of 8-orthogonal latin squares of order 4:

0	1	2	3	0	1	2	3				
1	2	3	0	3	0	1	2				
2	3	0	$1 \checkmark$	2	3	0	1				
3	0	1	2		2	3	0				
								$(0,0)$	$(1,1)$	$(2,2)$	$(3,3)$
								$(1,3)$	$(2,0)$	$(3,1)$	$(0,2)$
								$(2,2)$	$(3,3)$	$(0,0)$	$(1,1)$
	Note that $P\left(\mathrm{LS}_{1}, \mathrm{LS}_{2}\right)=P\left(\mathrm{LS}_{2}, \mathrm{LS}_{1}\right)$.										

Orthogonal Latin Squares

- Two latin squares of order n are orthogonal if $r=n^{2}$.
- Pair of orthogonal latin squares of order 3:

0	1	2
1	2	0
2	0	1
$L S_{1}$		

0	1	2
2	0	1
1	2	0
$L S_{2}$		

$\checkmark \quad$| $(0,0)$ | $(1,1)$ | $(2,2)$ |
| :---: | :---: | :---: |
| $(1,2)$ | $(2,0)$ | $(0,1)$ |
| $(2,1)$ | $(0,2)$ | $(1,0)$ |
| $S\left(L S_{1}, L S_{2}\right)$ | | |

r-orthogonality

- The spectrum (for r-orthogonality) is the set of all the possible values of r.
- The frequency (for r-orthogonality) is the number of pairs of latin squares of order n that are r-orthogonal.

r-orthogonality

- Example:

For latin squares of order 4 the spectrum is $\{4,6,8,9,12,16\}$ and the frequency for those values of r is

- Example:

For latin squares of order 6 the spectrum is $\{6,8,9,10,11,12$, $13,14,15,16,17,18,19,20,21$, $22,23,24,25,26,27,28,29,30$, $31,32,34\}$

r	f
4	4
5	0
6	12
7	0
8	6
9	24
10	0
11	0
12	48
13	0
14	0
15	0
16	2

r-orthogonality

- Theorem 3: For a positive integer n, a pair of r-orthogonal latin squares of order n, exists if and only if $r \in\left\{n, n^{2}\right\}$ or $n+2 \leq r \leq n^{2}+2$, except when
$-n=2$ and $r=4 ;$
$-n=3$ and $r \in\{5,6,7\} ;$
$-n=4$ and $r \in\{7,10,11,13,14\} ;$
$-n=5$ and $r \in\{8,9,20,22,23\} ;$
$-n=6$ and $r \in\{33,36\}$.

r-orthogonality

- Example:

For latin squares of order 4

r	4	5	6	7	8	9	10	11	12	13	14	15	16
f	$*$	0	$*$	0	$*$	$*$	0	0	$*$	0	0	0	$*$

r-orthogonality

- Proposition: There exist a pair of latin squares of order n that are r-orthogonal if and only if there exist a reduced latin square of order n and a semi-reduced latin square of order n that are r-orthogonal.
-Example: The number of pairs of latin squares of order 5 is $L_{5} \times L_{5}=26,011,238,400$. The number of pairs of reduced latin squares and semi-reduced latin squares is $I_{5} \times s I_{5}=75,264$.

Note: $\boldsymbol{s} \boldsymbol{I}_{\boldsymbol{n}}$ is the number of distinct semi-reduced latin squares of order n

r_{t}-orthogonality

- Let $\left\{\mathrm{LS}_{1}, \ldots, \mathrm{LS}_{t}\right\}$ be a set of $t \geq 2$ latin squares. Then, r_{t} is the sum of all the $r=P\left(\mathrm{LS}_{i}, \mathrm{LS}_{j}\right)$, with $1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{t}$ and $\mathrm{i} \neq \mathrm{j}$.

$$
r_{t}=\sum_{i=1}^{t-1} \sum_{j=i}^{t-1} P\left(L S_{i}, L S_{j+1}\right)
$$

- Example. Let $\left\{\mathrm{LS}_{1}, \mathrm{LS}_{2}, \mathrm{LS}_{3}\right\}$ be a set of three latin squares of order n :

$$
r_{3}=P\left(\mathrm{LS}_{1}, \mathrm{LS}_{2}\right)+P\left(\mathrm{LS}_{1}, \mathrm{LS}_{3}\right)+P\left(\mathrm{LS}_{2}, \mathrm{LS}_{3}\right)
$$

r_{t}-orthogonality

- Example: Here we have a set of three latin squares of order 4 with $r_{3}=9+12+9=30$

0	1	2	3	0	1	2	0	1	2	3
1	3	0	2	1	2	3	2	3	0	1
2	0	3	1	2	3	0	1	2	3	0
3	2	1	0	3	0	1	3	0	1	2

r_{t}-orthogonality

- The spectrum (for r_{t}-orthogonality) is the set of all the possible values of r.
- The frequency (for r_{t}-orthogonality) is the number of sets of t latin squares of order n that have an r_{t}-orthogonality, and it is denoted by $h_{r_{t}}$.

Mutually Orthogonal Latin Squares

- A collection $\left\{\mathrm{LS}_{1}, \mathrm{LS}_{2}, \mathrm{LS}_{3}, \ldots, \mathrm{LS}_{\mathrm{t}}\right\}$ of $t \geq 2$ latin squares of order n is said to be mutually orthogonal if every pair of distinct latin squares in the collection is orthogonal.
- Example. Let $\left\{\mathrm{LS}_{1}, \mathrm{LS}_{2}, \mathrm{LS}_{3}\right\}$ be a set of 3 latin squares of order n.

This set is orthogonal if $P\left(\mathrm{LS}_{1}, \mathrm{LS}_{2}\right)=n^{2}$, $P\left(\mathrm{LS}_{2}, \mathrm{LS}_{3}\right)=n^{2}$ and $P\left(\mathrm{LS}_{1}, \mathrm{LS}_{3}\right)=n^{2}$.

Mutually Orthogonal Latin Squares

- Example: Here we have a set of orthogonal latin squares of order 4:

0	1	2	3	0	2	3	1	0	3	1	2
1	0	,	2	1	3	2	0	1	2	0	3
2	3	0	1	2	0	1	3	2	1	3	0
3	2	1	0	3	1	0	2	3	0	2	1

Mutually Orthogonal Latin Squares

Questions:

Is there a collection of mutually orthogonal latin squares for every order?

If they exist, how big is the largest collection of mutually orthogonal latin squares for each order?

Mutually Orthogonal Latin Squares

- Let $N(n)$ denote the size of the largest collection of mutually orthogonal latin squares (MOLS) of order n (that exist).
$>$ Theorem 4. $N(n) \leq n-1$ for any $n \geq 2$.
$>$ Theorem 5. If q is a prime power, then $N(q)=q-1$.
- $q=p^{r}$ where p is prime number and $r \in N$
$>$ Theorem 6. $N(n) \geq 2$ for all n except 2 and 6 .

$$
-N(2)=1 \text { and } N(6)=1
$$

$>$ Theorem 7. Let $n=q_{1}, \ldots, q_{r}$, where q_{i} are distinct prime powers and $q_{1}<\ldots<q_{r}$. Then $N(n) \geq q_{1}-1$.

Mutually Orthogonal Latin Squares

Question:

Are there mutually orthogonal latin squares of order n if n is not a prime power?

Research Questions

- What is the maximum r_{t}-orthogonality, $\mathrm{M}_{n}(t)$?
- Are there any properties related to $M_{n}(t)$?
- What is the frequency and the spectrum (for r_{t}-orthogonality) for sets of three or more latin squares of order n ?

RESULTS

t	$\mathrm{M}_{t}(6)$
2	34
3	96
4	188
5	$300 \leq \mathrm{M}_{5}(6)<340$

Taken from R. Arce \& J. Cordova \& I. Rubio. (2009)

- We have tables with the spectrum for $n=4$ and 5 with $2 \leq t \leq n-1$ and for $n=6$ with $t=2$.
- We have tables with the frequency for $h_{2}(4), h_{3}(4), h_{2}(5)$, $h_{3}(5)$ and $h_{4}(5)$.

Computational Problem

$>$ Reduce number of comparisons and time
$>$ Restrict focus to special sets of latin squares
> Eliminate unnecessary comparisons

Computational Problem

- The plan:
-Distribute the work:
- Cores
- Processors
- Computers
-Design a specialized circuit that compares latin squares.

What is Known

- Number of distinct latin squares when $n \leq 11$.
- Number of distinct reduced latin squares when $n \leq 11$.
- The spectrum for r_{2}-orthogonality and for $n=4$ and 5 with $2 \leq t \leq n-1$.
- The frequency for $h r_{2}(4), h r_{3}(4), h r_{2}(5), h r_{3}(5), h r_{4}(5)$ and $h r_{2}(6)$.
- If n is a prime power and $t \leq n-1$, then

$$
\mathrm{M}_{t}(n)=n^{2}\binom{t}{2}
$$

- The number of latin squares of order $n=p^{r}$, where p is a prime number and $r \in \mathrm{~N}$, that are mutually orthogonal.

What is Unknown

- The number of distinct latin squares when $n \geq 12$.
- The number of distinct reduced latin squares when $n \geq 12$.
- The spectrum for r_{t}-orthogonality with $t>2$ and $n \geq 6$.
- The frequency for the r_{t}-orthogonality when $t>2$ and $n \geq 6$.
- The maximum r_{t}-orthogonality when $t=5$ and $n=6$
- The maximum r_{t}-orthogonality when n is not a prime power and $2<t \leq n-1$.
- Mutually orthogonal latin squares of order n when n is not a prime power.

FUTURE WORK

- Optimize the computing approach to apply it to the case $n=6$ because the time of computing the $\mathrm{M}_{3}(6)$ is 205.52541 years.
- Find properties of the latin squares that produce the $\mathrm{M}_{t}(n)$.
- Find a formula for $\mathrm{M}_{t}(n)$ when n is not a prime power and $t \leq n-1$.
- Estimate the probability that two random latin squares of order n are going to be mutually orthogonal.

REFERENCES

- C.J. Colbourn and J.H. Dinitiz, Editors, Handbook of Combinatorial Designs, Sec. Ed., Chapman and Hall/CRC, Boca Raton, FL, 2007.
- F. Castro \& C. Corrada \& G. Mullen \& I. Rubio. (2009). Some Computational Problems for Latin Squares.
- G. Mullen, \& C. Mummert. (2007). Finite Fields and Applications,_Chapter 2: Combinatorics. Section 2: Latin Squares. Pp. 43 - 59. P.cm - Student mathematical library; v.41, American Mathematical Society, Rhode Island, 2007.
- J. Bermúdez \& R. García \& R. López. (2009). Study of r-Orthogonality for Latin Squares.
- N. J. A. Sloane (1996-2008). A002860: Number of Latin squares of order n; or labeled Quasigroups. On-Line Encyclopedia of Integer Sequences. Retrieved on February 2, 2009 from http://www.research.att.com/~njas/sequences/table?a=2860\&fmt=4
- N. J. A. Sloane (1996-2008). A000315: Number of reduced Latin squares of order n; labeled loops (Quasigroups with an identity element) and a fixed identity. On-Line Encyclopedia of Integer Sequences. Retrieved on April 4, 2009 from http://www.research.att.com/~njas/sequences/table?a=315\&fmt=4
- R. Arce \& J. Cordova \& I. Rubio. (2008). Consideraciones Computacionales de Latin Squares (Power Point).
- http://cs.anu.edu.au/~bdm/data/latin.html

ACKNOWLEDGEMENTS

This research was done in collaboration with the Latin Square Research Group consisting of:

Prof. Rafael Arce, Prof. Francis Castro,
Prof. Javier Cordova, Prof. Ivelisse Rubio,
University of Puerto Rico in Río Piedras,
and Prof. Gary Mullen, Penn State University.
The Puerto Rico Luis Stokes Alliance for Minority Participation (PR-LSAMP).

