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Abstract 

Efficient unsupervised algorithms for the detection of 

patterns in time series data, often called motifs, have 

been used in many applications, such as identifying 

words in different languages, detecting anomalies in 

ECG readings, and finding similarities between 

images.  We present a process that creates a 

personalized multivariate time series representation 

—a Multivariate Time Series Amalgam (MTSA) — of 

physiological data and laboratory results that 

physicians can visually interpret. We then apply a 

technique that has demonstrated success with the 

interpretation of univariate data, named Symbolic 

Aggregate Approximation (SAX), to visualize 

patterns in the MTSAs that may differentiate between 

medical conditions such as renal and respiratory 

failure. 

Introduction 

The medical domain has long been an area where 

computer science has the potential to play a pivotal 

role. A national push for the use of electronic medical 

records
1
 has not yet shown great success. 

Nevertheless, EMRs, when fully implemented, can 

store an immense amount of information about a 

patient’s vital signs, laboratory results, medications 

and device data.  The technology now exists to 

capture up to 350 different types of vital signs and 

laboratory reports on a patient in intensive care.  

However, this data is under-utilized: better tools are 

needed for multivariate time series analysis and 

visualization. 

Current methods used to understand clinical data 

primarily focus on analyzing the data along a single 

dimension.   For example, if a provider is reviewing 

the status of a patient with respiratory distress, she 

would examine the individual vital signs and 

laboratory results that pertain to the respiratory 

system. These vital signs and laboratory results each 

represent a univariate time series. The detection of an 

abnormal or unusual circumstance is typically based 

on the examination of the univariate parameters to 

identify values that fall above or below a preset 

threshold. However, because of parameter 

dependence and variation over time in a complex 

organism such as a human, examining the vital signs 

and laboratory results together in a multivariate time 

series may provide greater insight into how the body 

and its vital organs function as a whole and a means 

by which to better diagnose and treat a patient. 

We present a process that interleaves univariate time 

series data into a multivariate time series 

representation, which we refer to as a Multivariate 

Time Series Amalgam (MTSA).   We present a 

visualization of the resulting MTSA that groups 

related vital signs and laboratory results together and 

that displays the changes in each over time.  We 

illustrate this visualization using the data of one 

critically ill child.  We then create the MTSAs of the 

vital signs and laboratory data from five critically ill 

children.  We show how to convert each MTSA into 

the SAX string representation that was originally 

created for use with univariate time series data.
2
  

Finally, we discuss how the resulting string-based 

representation could be used to group patients 

according to patterns in their physiological data.    

Background 

Much of the previous research on time series analysis 

has focused on univariate time series data. An 

extensive survey of the history of times series 

research is given by Keogh.
3
   

In order to simplify the time series for data mining, 

we considered using several alternative time series 

representations, including Discrete Fourier 

Transformation,
4
 Discrete Wavelet Transformation,

5
 

and Piecewise Linear Approximation.
6
  We chose to 

use SAX
7
 because of its ease of computation and 

comprehension and its ability to reduce the data’s 

dimensionality and to provide a lower bound on 

Euclidean distances between time series.  However, 

SAX is designed for univariate data.  We demonstrate 

that MTSAs can be converted into a SAX 

representation with the goal of analyzing them 

effectively using methods that are normally reserved 

for univariate time series in future work.  



  

SAX is well known for its ability to detect motifs and 

anomalies in univariate time-series data.  It has also 

been used to measure the similarity of images and 

motions.   

SAX first normalizes the data so that each time series 

has a mean of 0 and a standard of deviation of 1, 

assuming a Gaussian distribution of the values.   SAX 

then divides the time series C (shown as a curved line 

in Figure 1) of length n into w segments of equal 

width along the x-axis. The time series in Figure 1 has 

w = 8.  The average of the values within each segment 

is used as the value for the segment in a new 

discretized time series.  This representation of time 

series is known as Piecewise Aggregate 

Approximation (PAA, represented by the colored 

horizontal lines in Figure 1).  SAX then examines the 

Gaussian distribution of values and divides the 

distribution into equal parts, depending on the desired 

alphabet size.  For example, for an alphabet size of 3, 

the separations occur at -.43 and .43 in a normalized 

Gaussian distribution, as shown by the straight 

horizontal gray lines in Figure 1. The PAA value for 

each segment is then converted into a symbol, 

depending on the section of the distribution into 

which the PAA value falls (labels a, b and c in Figure 

1). 

Figure 1: SAX diagram by 

Keogh3

 

Methods 

Preprocessing of Data: 

The quality of medical data is far from ideal because 

there are so many human factors that influence the 

measurement and documentation of the data.  

Therefore, significant effort is required to preprocess 

the data.  

In the case of the Pediatric Intensive Care Unit 

(PICU) data used in this paper, several of the 

parameter values contained cancelled or missing data, 

meaning that the measurement was not taken at its 

designated time.  These data points were ignored.  

In addition, the measurements for the parameters 

varied in frequency from once every 15 minutes to 

once every few days.  Since existing time series 

methods generally assume a constant sampling rate 

for all measurements, we used linear interpolation 

methods across the missing data in order to create the 

MTSA.  

The physiological variables selected had to be easily 

and frequently measurable for any critically ill child.  

The criterion for the selected patients was that they 

experienced either respiratory or renal failure. 

The selected parameters were separated into four 

categories, those associated with the cardiac, 

pulmonary, renal and miscellaneous systems. The 

order of the parameters can be seen in Table 1. In 

future work, we aim to increase the number of 

parameters for the cardiac and pulmonary categories.  

Here we were limited by the number of parameters 

that were common to all five patients. 

Table 1: List of Physiological Parameters 

Parameter Category 

Heart Rate (HR) Cardiac 

Respiratory Rate (RR) 
Pulmonary 

pCO2 

CO2 

Renal 
Creatinine 

BUN 

Na 

White Blood Cell Count (WBC) 

Miscellaneous Core Temperature 

Hematocrit (Hct) 

Modified PAA:  

The difficulty in performing PAA on several 

univariate time series using the frame length w was 

the result of the missing data. Some of the vital signs 

and laboratory results were not recorded within an 

interval of the desired frame length, and all of the 

univariate time series needed to have the same 

window size in order to create the MTSA.  To avoid 



  

extrapolation and to evaluate all parameter values, we 

used the latest recorded parameter starting value and 

the earliest recorded parameter ending value. The 

times of these values became the boundaries for all of 

the univariate parameter time series for a given 

patient. 

PAA was used for all frames that contained data.  

However, if a frame did not have data, the value for 

the frame was calculated by using linear regression 

between the points nearest the boundaries of the 

frame.  In Figure 2, frames 1, 2 and 4 use PAA, and 

frame 3 uses linear interpolation. 

 

 

Multivariate Time Series Amalgam (MTSA): 

Once the univariate time series for a given patient 

have been calculated using the modified PAA, the 

MTSA can be created.  

The primary objective of the MTSA was to create a 

multivariate representation of the univariate data that 

we could use to both analyze a patient’s data relative 

to itself and to examine the patient as a whole, 

meaning that the representation focused on changes in 

the parameters and examined all of the parameters at 

once for a given instance.  The second objective was 

to create a visualization that providers would find 

intuitive and inclusive and that would emphasize the 

changes in a patient’s state over time. 

In order to meet the first objective, the MTSA 

interleaves all of the values for each instance in a 

consistent order.  To meet the second objective, the 

order for the interleaving was determined to be 

relative to the organs for which the vital sign or lab 

report provides information. Thus, all parameters that 

measure the state of a given vital organ are grouped 

together.  

The MTSA Visualization: 

Once the values for the individual time series have 

been calculated, then the multivariate time series is 

created by interleaving the values for an instance in 

time.  A radial representation for the series at one 

instance is shown in Figure 3. 

 

Figure 3: A radial representation of a multivariate time 

series for one patient at one instance in time. 

The MTSA consists of an amalgamation of these 

instances.  Several instances can be overlaid one 

another, as in Figure 4, to reveal a patient’s 

progression over time for multiple variables.  The 

temporal relationship of these overlaid multivariate 

time series is indicated by the color of the lines.  The 

darkest line represents the most current instance in 

the MTSA and the lightest represents the oldest one. 

From MTSA to SAX: 

The resulting MTSA is a collection of pictures in 

time of a person’s physiological data that are grouped 

in a manner to visualize more clearly the 

physiological changes in patient relating to one major 

organ.  The MTSA can also be viewed as a simple 

time series; five MTSAs are displayed in this manner 

in Figure 5.   

We cut the MTSAs for each patient into the same 

length, aligning them as advised by domain experts. 

On examination they look as if they are overlaid 

because of the recurring patterns.   

 

Notice that some of the MTSAs such as the ones for 

patients 3 and 4 show a pattern of convergence at a 

central region.  We are working on developing 

methods to find these patterns and discover their 

medical significance. 

 

One of the methods we are currently using is SAX. 

We applied SAX to convert the MTSAs into string-

based representations. We used the MINDIST
2
 

method to measure the distances between the strings 

and clustered them using a single link clustering 

method.   

Figure 2: Linear Regression for Missing Values 



  

 

Figure 4: A radial representation of a multivariate time 

series for one patient over six hours. 

Patient 1 

 

Patient 2 

 

Patient 3 

 

Patient 4 

 

Patient 5 

 

Figure 5: Multivariate representations of patients. 

 

The MVAs clustered into two categories, but not into 

the desired renal and respiratory failure categories. In 

Figure 5, Patient 3 is the one that clustered 

independently of the others, but Patient 2 is the only 

one that experienced renal failure.  Although MTSA 

shows promise for visualization, a different approach 

may be necessary for creating MTSAs on which we 

can relevantly categorize patients.   

Related Work 

Much of the research in medicine on vital signs data 

focuses on monitoring patients remotely and on using 

vital signs to determine when a patient is in duress.  

Duress has generally been measured by the traditional 

method of using preset thresholds for these values.  

There is also some research on personalizing 

medicine given a patient’s genotype.    

Caraça-Valente & López-Chavarrías
8 

characterize 

possible injuries by using data mining techniques to 

analyze data from patients doing isokenetic exercises 

on a machine.  They use Euclidean distance to cluster 

the results. 

 

Chuah & Fu
9
 use time series analysis to detect ECG 

anomalies.  They describe a method for normalizing 

the time series, an adaptive window-based discord 

discovery (AWDD) scheme to detect abnormal 

heartbeats.  The algorithm can be used in real time, 

but it is a supervised algorithm. 

 

Seely & Macklen
10

 use the science of variability 

analysis to describe the behavior of complex systems 

that have characteristic patterns of variation over 

time.  Although their paper does not mention any data 

mining techniques, it does characterize the range of 

biological signals and describes many statistical and 

mathematical techniques for variability analysis. 

 

Saeed & Mark
11

 use data mining techniques and heart 

rate, blood pressure and cardiac output measurements 

to determine whether similar patterns in patient’s 

physiological data prior to hemodynamic 

deterioration could be indicative of an episode of 

severe hypotension.  Their method converts the time 

series into Discrete Wavelets Transformations, then 

uses a k-nearest-neighbor classification to create a 

predictor for hemodynamic deterioration. Their 

algorithm is a supervised learning algorithm. 

 

Our research probably most closest emulates the 

research described by Sorani et al.
12

 They performed 

hierarchical clustering on 23 patients using 20 

physiological parameters from the ICU.  The data was 

captured every minute, a much higher sampling 

frequency than was available for our patients.  Also, 

because all of the data was captured at the same 

frequency, no interpolation of the data was required.  

The patients had all experienced traumatic brain 



  

injury (TBI) and by using multivariate time series 

analysis of the physiological data could be clustered 

into one of three categories.  

Future Work 

Our goal is to use larger data sets to categorize 

patients according to outcome. For example, patients 

with Traumatic Brain Injury (TBI) can be categorized 

into three categories: those that recover fully, those 

that recover with injury, and those that do not 

recover.  We are particularly interested in patients 

with TBI because we expect more consistent data at 

more regular intervals.  We aim to cluster the MTSA 

or SAX representations into medically relevant 

categories.  The SAX representation’s similarity to a 

DNA sequence suggests that we may be able to use 

genetic sequencing alignment methods to make the 

entire process unsupervised.   

Since patients are in the PICU for varying lengths of 

time, one difficulty in comparing patients is to align 

these different length time series. In this paper, we 

used domain experts to indicate the likely start and 

end points that encompassed the critical “failure” 

period.  In future work, our goal is to align the data 

without the use of domain experts by using sliding 

windows for comparison, or by using preprocessing 

to select likely failure regions (which should appear 

in the data as anomalous or transitional regions with 

the time series). Using data from different patient 

categories, we also hope to determine markers that 

can alert a provider to intervene in a timely fashion to 

change the course of a patient from heading toward a 

less than desirable state to desirable one. 

We intend to add to our visualization the ability for 

the provider to set a desired state for a patient and use 

the visualization to compare a patient’s current and 

past states to a desired state.  To achieve this goal, we 

will have to make our visualization run in real time.  

Once the visualization is complete, we will have 

several anesthesiology residents handle the same 

simulated surgical procedure.  Half will use the 

traditional visualization found in the OR and the 

others will be aided with the new MTSA 

visualizations and determine which group is best able 

to determine and correctly diagnose the critical 

conditions. 

Conclusion 

We have presented an algorithm for the creation of a 

Multivariate Time Series Amalgam that is comprised 

of interleaved univariate time series data.  The 

visualization of the MTSA enables providers to 

examine a patient’s overall state over time in a 

multivariate fashion which will improve a patient’s 

prognosis and subsequent treatment. 
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